吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if(regularizer != None):
tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2 BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "F:\\TensorFlowGoogle\\201806-github\\datasets\\MNIST_data\\"
MODEL_NAME = "mnist_model" def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
# 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main(argv=None):
mnist = input_data.read_data_sets("F:\\TensorFlowGoogle\\201806-github\\datasets\\MNIST_data\\", one_hot=True)
train(mnist) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别的更多相关文章
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- 吴裕雄 python神经网络 手写数字图片识别(5)
import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...
- 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...
- 吴裕雄--天生自然TensorFlow2教程:手写数字问题实战
import tensorflow as tf from tensorflow import keras from keras import Sequential,datasets, layers, ...
- 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...
- caffe+opencv3.3dnn模块 完成手写数字图片识别
最近由于项目需要用到caffe,学习了下caffe的用法,在使用过程中也是遇到了些问题,通过上网搜索和问老师的方法解决了,在此记录下过程,方便以后查看,也希望能为和我一样的新手们提供帮助. 顺带附上老 ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- 基于TensorFlow的MNIST手写数字识别-初级
一:MNIST数据集 下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...
随机推荐
- ThinkCMF后台地址加密忘记了无法打开后台怎么办?
ThinkCMF后台地址加密忘记了无法打开后台怎么办?笔者为了网站安全把ThinkCMF后台的安全模式打开后忘了保存加密地址,导致无法登陆后台,找了些网上的资料,不太靠谱,只好从代码入手,找到/app ...
- UVALive 3942 字典树+dp
其实主要是想学一下字典树的写法,但这个题目又涉及到了DP:这个题目要求某些单词组成一个长子串的各种组合总数,数据量大,单纯枚举复杂度高,首先肯定是要把各个单词给建成字典树,但是之后该怎么推一时没想到. ...
- macOS下的播放器
很早前用 MplayerX, 现在不能用了, 找到一个替代品 https://iina.io/. 挺不错.
- 吴裕雄--天生自然 JAVASCRIPT开发学习:(String) 对象
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- PAT Advanced 1147 Heaps (30) [堆,树的遍历]
题目 In computer science, a heap is a specialized tree-based data structure that satisfies the heap pr ...
- 视觉slam十四讲个人理解(ch7视觉里程计1)
参考博文::https://blog.csdn.net/david_han008/article/details/53560736 https://blog.csdn.net/n66040927/ar ...
- 18 11 15 网络通信 ---- 多任务----线程 threading
下面是一个 多线程 运算 调用了 threading 模块 可以同时在一个程序中 跑两个函数 import threading def text1 (): for i in range( ...
- Linux系统相关命令
时间和日期 date cal 磁盘和目录空间 df du 进程信息 ps top kill 01. 时间和日期 序号 命令 作用 01 date 查看系统时间 02 cal calendar 查看日历 ...
- java中abstract怎么使用
abstract(抽象)修饰符,可以修饰类和方法 1,abstract修饰类,会使这个类成为一个抽象类,这个类将不能生成对象实例,但可以做为对象变量声明的类型,也就是编译时类型,抽象类就像当于一类的半 ...
- JS 日期格式化为 2020-11-01 22:33:44 格式
项目中经常会用到将JS日期格式化输出为 标准格式(2020-11-01 22:33:44)的问题.写个精简版的,代码如下: function formatDate(d){ d = d || new D ...