这个莫队如果用线段树来维护的话,复杂度是$O(n\sqrt{n}logn+qlogn)$

很明显,可以看出来莫队每次$O(1)$的移动因为套上了线段树变成了$O(logn)$,但莫队移动的总数是非常大的,所以乘起来复杂度就上天了。

那么有没有一种方法在修改上能够比线段树更快,同时又能相比暴力较快地回答询问呢?

我们可以用分块,把序列分成$\sqrt{n}$块,修改的复杂度是$O(1)$,回答询问的复杂度是$O(\sqrt{n})$

这样用分块代替线段树总复杂度就变成了$O(n\sqrt{n}+q\sqrt{n})$,然后就AC了~

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100003;
const int M = 1000003;
void read(int &k) {
k = 0; int fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = (k << 1) + (k << 3) + c - '0';
k = k * fh;
} struct node {int l, r, a, b, id;} Q[M];
int w[N], bel[N], n, m, sum[N], A[M], c[N]; bool cmp(node A, node B) {return bel[A.l] == bel[B.l] ? A.r < B.r : A.l < B.l;}
void update(int a, int flag) {
c[a] += flag;
if (flag == -1 && c[a] == 0) --sum[bel[a]];
if (flag == 1 && c[a] == 1) ++sum[bel[a]];
}
int QQ(int l, int r) {
int bl = bel[l], br = bel[r], ret = 0;
if (bl == br) {
for(int i = l; i <= r; ++i)
if (c[i] > 0) ++ret;
return ret;
}
for(int i = l; bel[i] == bel[l]; ++i)
if (c[i] > 0) ++ret;
for(int i = r; bel[i] == bel[r]; --i)
if (c[i] > 0) ++ret;
for(int i = bel[l] + 1; i < bel[r]; ++i)
ret += sum[i];
return ret;
} int main() {
read(n); read(m);
for(int i = 1; i <= n; ++i) read(w[i]);
for(int i = 1; i <= m; ++i) {read(Q[i].l); read(Q[i].r); read(Q[i].a); read(Q[i].b); Q[i].id = i;} int t = sqrt(n + 0.5), cnt = 1, tmp = 1;
for(int i = 1; i <= n; ++i) {
bel[i] = tmp;
++cnt; if (cnt > t) {cnt = 1; ++tmp;}
} sort(Q + 1, Q + m + 1, cmp); int l = 1, r = 0, tol, tor;
for(int i = 1; i <= m; ++i) {
tol = Q[i].l; tor = Q[i].r;
while (l < tol) update(w[l++], -1);
while (l > tol) update(w[--l], 1);
while (r < tor) update(w[++r], 1);
while (r > tor) update(w[r--], -1);
A[Q[i].id] = QQ(Q[i].a, Q[i].b);
} for(int i = 1; i <= m; ++i) printf("%d\n", A[i]); return 0;
}

分块大法好

【BZOJ 3809】Gty的二逼妹子序列的更多相关文章

  1. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

  2. Bzoj 3809: Gty的二逼妹子序列 莫队,分块

    3809: Gty的二逼妹子序列 Time Limit: 35 Sec  Memory Limit: 28 MBSubmit: 868  Solved: 234[Submit][Status][Dis ...

  3. BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  4. BZOJ 3809 Gty的二逼妹子序列(莫队+分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3809 [题目大意] 给定一个长度为n(1<=n<=100000)的正整数序 ...

  5. bzoj 3809 Gty的二逼妹子序列——莫队+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 容易想到树状数组维护值域.但修改和查询都是 log 太慢. 考虑有 nsqrt(n) ...

  6. [ AHOI 2013 ] 作业 & [ BZOJ 3809 ] Gty的二逼妹子序列

    \(\\\) Description 给出一个长为 \(n\) 的数列 \(A\) 和 \(k\),多次询问: 对于一个区间 \([L_i,R_i]\),问区间内有多少个数在 \([a_i,b_i]\ ...

  7. bzoj 3809 Gty的二逼妹子序列 —— 莫队+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 据说一开始应该想到莫队+树状数组,然而我想的却是莫队+权值线段树... 如果用权值线段 ...

  8. bzoj 3809 Gty的二逼妹子序列(莫队算法,块状链表)

    [题意] 回答若干个询问,(l,r,a,b):区间[l,r]内权值在[a,b]的数有多少[种]. [思路] 考虑使用块状链表实现莫队算法中的插入与删除. 因为权值处于1..n之间,所以我们可以建一个基 ...

  9. BZOJ 3809: Gty的二逼妹子序列 & 3236: [Ahoi2013]作业 [莫队]

    题意: 询问区间权值在$[a,b]$范围内种类数和个数 莫队 权值分块维护种类数和个数$O(1)-O(\sqrt{N})$ #include <iostream> #include < ...

  10. BZOJ.3809.Gty的二逼妹子序列(分块 莫队)

    题目链接 /* 25832 kb 26964 ms 莫队+树状数组:增加/删除/查询 都是O(logn)的,总时间复杂度O(m*sqrt(n)*logn),卡不过 莫队+分块:这样查询虽然变成了sqr ...

随机推荐

  1. Bash的自动补全

    内置补全命令 Bash内置两个补全命令,分别是compgen和complete.compgen命令根据不同的参数,生成匹配单词的候选补全列表,例子如下: monster@monster-Z:~$ co ...

  2. SSM三大框架整合详细教程(Spring+SpringMVC+MyBatis)(转)

    使用 SSM ( Spring . SpringMVC 和 Mybatis )已经有三个多月了,项目在技术上已经没有什么难点了,基于现有的技术就可以实现想要的功能,当然肯定有很多可以改进的地方.之前没 ...

  3. 最短路径问题的Dijkstra和SPFA算法总结

    Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...

  4. Android驱动入门-Led控制+app+ndk库+底层驱动

    硬件平台: FriendlyARM Tiny4412 Cortex-A9 操作系统: UBUNTU 14.04 LTS 时间:2016-09-20  21:56:48 本次实验使用的是 安卓APP + ...

  5. 隐写-CTF中图片隐藏文件分离方法总结

    0x00 前言 在安全的大趋势下,信息安全越来越来受到国家和企业的重视,所以CTF比赛场次越来越多,而且比赛形式也不断的创新,题目也更加新颖有趣,对选手的综合信息安全能力有一个较好的考验,当然更好的是 ...

  6. mui禁止滚动条和禁止滚动

    mui.plusReady(function () { plus.webview.currentWebview().setStyle({ scrollIndicator: 'none' }); }); ...

  7. 通俗理解T检验和F检验

    来源: http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html   1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总 ...

  8. 传递多个参数并获取Web API的数据

    近段时间学习Web Api觉得非常有意思.默认的路由情况之下,获取数据时,它不必指定Action操作名. 还有另外感想,就是自从学习asp.net MVC之后,加上jQuery,让Insus.NET已 ...

  9. Tomcat部署学习

    tomcat也可以称为catalina catalina_home就是tomcat安装路径:D:\Program Files\apache-tomcat-8.0.36\bin     windows下 ...

  10. Integer.valueof(null)报错

    原文  http://javacat360.iteye.com/blog/2024378 主题 Java 昨天,一同事问我一个问题,估计是他前段日子面试遇到的 问题很简单,String.valueof ...