题目链接https://codeforc.es/contest/1045/problem/F

题意:先给出一个系数不确定的二元多项式,Borna可以给这个多项式的每一项填上正的系数,Ani能从这个多项式中删除一项。询问删除一项后该多项式是否存在下界(即最小值趋向于\(-\infty\)还是等于一个不为无穷小的数值)。

题解:首先我们可以发现偶数项(x项和y项次数均为偶)都存在下界,只有奇数项(x项和y项)可以不存在下界,问题就是如何判断奇数项能否导出\(-\infty\)。

然后经过一通分(乱)析(搞),我们发现如果把x项的系数\(a_i\)和y项的系数\(b_i\)看做点\((a_i,b_i)\),那当且仅当所有点和原点构成的凸包上存在奇数点时该多项式能趋向于\(-\infty\)。接下来我们证明这个结论。

  • 当凸包上全是偶数点时,多项式存在下界

    如下图,凸包上全是偶点,凸包内存在奇数点时,凸包内的奇数点向量坐标可以用凸包上的点表示。如图中\(G\)点,\(H\)点。简单的数学想法:我们设凸包上除原点外共有\(k\)个点,每个点坐标为\(P1(a_1,b_1)\) , \(P2(a_i,b_i)\) , ... , \(P_k(a_k,b_k)\)。则凸包内任意一点\(Q(a,b)\)坐标可表示为\(Q = \sum_{i=1}^kc_iP_i\)(\(c_i\)为大于等于0的常数)。如果这个点在凸包外,那么存在系数\(c_j\)小于零。

由此,我们可以得到:

\(\sum_{i=1}^kx^{kc_ia_i}y^{kc_ib_i}\ge\vert x^{\sum_{i=1}^kc_ia_i}y^{\sum_{i=1}^kc_ib_i}\vert\) \(\Leftrightarrow\) \(\vert x^{a}y^{b}\vert\) (均值不等式)

也就是说,凸包上的点必定能抵消凸包内的点。

  • 当凸包上存在奇数点时,多项式可以不存在下界

    我们先假设\((x,y)\)的取值为\((-t^p,t^q)\),则某一奇数项\(x^{a}y^{b}\)转变为\(-t^{(ap+bq)}\),而\((ap+bq) = (a,b)\cdot(p,q)\),因此我们只需要找到\((a,b)\)点乘\((p,q)\)向量最大的情况。

    如下图,若存在奇数点(图中为D点)则必定有一条直线能够仅通过该点而不穿越凸包。我们作一条垂线,取向量\(\vec{AH}\)为\((p,q)\)。并且此时\((p,q)\)向量点乘任何凸包上的点均小于\(\vec{AH}\cdot\vec{AD}\),即该奇数点是高阶无穷小。

证毕。由此,本题转化为在凸包上删除一点后生成的新凸包上是否存在奇数点。暴力枚举每个点显然会T,但是可以发现删除凸包上一点只会影响该点引出的两条线,也就是说该点边上的两个点仍然在凸包上,因此我们可以用黑白染色的方法来优化。即先直接跑一次凸包;然后删除第1, 3, 5, 7, ... 号点跑一次凸包;再删除第2, 4, 6, 8, ... 号点跑一次凸包。这样就不会影响每个被删除点边上的两个点。总共跑3次凸包,即可得出结果。

AC代码

#include <bits/stdc++.h>
#define SIZE 300007
#define rep(i, a, b) for(int i = a; i <= b; ++i)
using namespace std;
typedef long long ll;
void io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
ll n, m, t, num; int k;
map<pair<ll, ll>, int> mp;
struct Point {
ll x, y;
int num;
bool flag = false;
};
Point p[SIZE], ch[SIZE], tp[SIZE];
bool cmp(Point a, Point b) { //andrew算法排序预处理函数
if (a.x == b.x) return a.y < b.y;
else return a.x < b.x;
}
ll cross(Point a, Point b, Point c) { return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); }
int andrew(Point p[], Point ch[], ll n) { //安德鲁算法求凸包,返回顶点数
sort(p + 1, p + n + 1, cmp);
ll top = 0;
for (int i = 1; i <= n; ++i) {
while ((top > 1) && (cross(ch[top - 1], ch[top], p[i]) <= 0)) --top;
ch[++top] = p[i];
}
ll tmp = top;
for (int i = n - 1; i; --i) {
while ((top > tmp) && (cross(ch[top - 1], ch[top], p[i]) <= 0)) --top;
ch[++top] = p[i];
}
if (n > 1) top--;
return top;
}
void draw(int top, Point ch[], Point p[]) { //染色操作
rep(i, 2, top) {
p[mp[make_pair(ch[i].x, ch[i].y)]].num = 1; ++i;
p[mp[make_pair(ch[i].x, ch[i].y)]].num = 2;
}
p[1].num = 0;
}
void preset(int s){ //把染色后的点丢进tp数组中
k = 1;
rep(i, 1, n) {
if (p[i].num == s) continue;
tp[k++] = p[i];
}
}
bool judge(int top, Point ch[]) { //判断凸包上是否存在奇数点
rep(i, 1, top)
if (!ch[i].flag)
return true;
return false;
} int main() {
io();
cin >> n; ++n;
p[1].flag = true; mp[make_pair(0, 0)] = 1;
rep(i, 2, n) {
cin >> p[i].x >> p[i].y;
if ((p[i].x == 0) && (p[i].y == 0)) { --i, --n; continue; } //避免(0,0)点重复出现
if (((p[i].x % 2) == 0) && ((p[i].y % 2) == 0)) p[i].flag = true; //标记偶数点
}
int top = andrew(p, ch, n);
rep(i, 1, n) mp[make_pair(p[i].x, p[i].y)] = i; //用map标记路径
draw(top, ch, p);
if (judge(top, ch)) { puts("Ani"); return 0; }
preset(1);
top = andrew(tp, ch, k - 1);
if (judge(top, ch)) { puts("Ani"); return 0; }
preset(2);
top = andrew(tp, ch, k - 1);
if (judge(top, ch)) { puts("Ani"); return 0; }
puts("Borna");
}

Codeforces 1045F Shady Lady 凸包+数学的更多相关文章

  1. [Codeforces 1178D]Prime Graph (思维+数学)

    Codeforces 1178D (思维+数学) 题面 给出正整数n(不一定是质数),构造一个边数为质数的无向连通图(无自环重边),且图的每个节点的度数为质数 分析 我们先构造一个环,每个点的度数都是 ...

  2. Codeforces 166B - Polygon (判断凸包位置关系)

    Codeforces Round #113 (Div. 2) 题目链接:Polygons You've got another geometrical task. You are given two ...

  3. Codeforces 627 A. XOR Equation (数学)

    题目链接:http://codeforces.com/problemset/problem/627/A 题意: 告诉你s 和 x,a + b = s    a xor b = x   a, b > ...

  4. Codeforces Beta Round #2B(dp+数学)

    贡献了一列WA.. 数学很神奇啊 这个题的关键是怎么才能算尾0的个数 只能相乘 可以想一下所有一位数相乘 除0之外,只有2和5相乘才能得到0 当然那些本身带0的多位数 里面肯定含有多少尾0 就含有多少 ...

  5. codeforces 803C Maximal GCD(GCD数学)

    Maximal GCD 题目链接:http://codeforces.com/contest/803/problem/C 题目大意: 给你n,k(1<=n,k<=1e10). 要你输出k个 ...

  6. Codeforces 789A Anastasia and pebbles(数学,思维题)

    A. Anastasia and pebbles time limit per test:1 second memory limit per test:256 megabytes input:stan ...

  7. Codeforces 839C Journey - 树形动态规划 - 数学期望

    There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can r ...

  8. CodeForces 215B Olympic Medal(数学啊)

    题目链接:http://codeforces.com/problemset/problem/215/B Description The World Programming Olympics Medal ...

  9. Educational Codeforces Round 11A. Co-prime Array 数学

    地址:http://codeforces.com/contest/660/problem/A 题目: A. Co-prime Array time limit per test 1 second me ...

随机推荐

  1. No Delegate set : lost message:libpng error: Not a PNG file

    当出现这个问题时,是因为本来是jpg或其他格式的图片存成了png导致的.或者有的图片本来就是jpg的,Android Studio一编译,发现不是png才造成了这个问题.解决这个问题可以在Androi ...

  2. spring(四):IoC初始化流程&BeanDefinition加载注册

    ApplicationContext context = new ClassPathXmlApplicationContext("hello.xml"); /** * * @par ...

  3. totensor方法和normalize方法 数值映射和归一化

    totensor方法和normalize方法 数值映射和归一化 待办 ToTensor是指把PIL.Image(RGB) 或者numpy.ndarray(H x W x C) 从0到255的值映射到0 ...

  4. webpack4.41.0配置四(热替换)

    每次修改都要去编译,这个操作比较繁琐.所以我们希望编译过程是自动化的,而且页面的更新也是自动化的.所以需要使用这个热替换 1.首先安装webpack-dev-server:npm install  w ...

  5. Go_MySQL查询插入删除

    什么是预处理? 普通SQL语句执行过程: 客户端对SQL语句进行占位符替换得到完整的SQL语句. 客户端发送完整SQL语句到MySQL服务端 MySQL服务端执行完整的SQL语句并将结果返回给客户端. ...

  6. opencv:轮廓逼近与拟合

    轮廓逼近,本质上是减少编码点 拟合圆,生成最相似的圆或椭圆 #include <opencv2/opencv.hpp> #include <iostream> using na ...

  7. 大数据的特征(4V+1O)

    数据量大(Volume):第一个特征是数据量大,包括采集.存储和计算的量都非常大.大数据的起始计量单位至少是P(1000个T).E(100万个T)或Z(10亿个T). 类型繁多(Variety):第二 ...

  8. 吴裕雄 python 机器学习——主成份分析PCA降维

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  9. vs查看动态库依赖

    dumpbin是VS自带的工具,进入Visual Studio 的命令提示 查看程序或动态库所依赖的动态库 dumpbin /dependents  abc.exe 查看动态库的输出函数 dumpbi ...

  10. 关于mybatis中sql映射文件模糊查询的使用

    1.从前台传递一个String类型的参数到后台进行查询,如果牵涉到模糊查询会报错,应该把参数封装到对象中再进行传递然后进行模糊查询 2.一个查询框,多个查询条件 <if test="c ...