感觉我的做法并不是最优做法...

考虑一个置换\(g\)中的一个置换环\(S\)

在\(g^n\)的形态中,它变为了\(gcd(n, |S|)\)个长度相同的置换环

那么,我们考虑对\(f\)的所有置换环考虑

所有的长度相同的置换环都可以合并

如果\(a\)个长度为\(b\)的置换环合并成一个环,那么方案数为\(b^{a - 1} (a - 1)!\)

需要判掉不合法的情况

其意义是考虑第一个置换以及固定第一个元素,其他任意选择

以这个弄出指数生成函数\(F(x)\),那么对于长度为\(b\)的合并方案就是\(e^{F(x)} [num(b)]\)\

对于每个长度都这么讨论即可

复杂度\(O(n \log n)\)


#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rec(io, ed) for(ri io = 0; io < ed; io ++)
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) #define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
} const int sid = 3e5 + 5;
const int mod = 998244353; inline void inc(int &a, int b) { a += b; if(a >= mod) a -= mod; }
inline void dec(int &a, int b) { a -= b; if(a < 0) a += mod; }
inline int mul(int a, int b) { return 1ll * a * b % mod; }
inline int fp(int a, int k) {
int ret = 1;
for( ; k; k >>= 1, a = mul(a, a))
if(k & 1) ret = mul(ret, a);
return ret;
} int n, rev[sid];
int vis[sid], nc[sid], p[sid]; inline void init(int Mn, int &N, int &lg) {
N = 1, lg = 0;
while(N < Mn) N <<= 1, lg ++;
} inline void NTT(int *a, int n, int opt) {
rec(i, n) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(ri i = 1; i < n; i <<= 1)
for(ri j = 0, g = fp(3, (mod - 1) / (i << 1)); j < n; j += (i << 1))
for(ri k = j, G = 1; k < i + j; k ++, G = mul(G, g)) {
int x = a[k], y = mul(G, a[i + k]);
a[k] = (x + y >= mod) ? x + y - mod : x + y;
a[i + k] = (x - y <0) ? x - y + mod : x - y;
}
if(opt == -1) {
reverse(a + 1, a + n);
int ivn = fp(n, mod - 2);
rec(i, n) a[i] = mul(a[i], ivn);
}
} int iva[sid], ivb[sid];
inline void Inv(int *a, int *b, int n) {
if(n == 1) { b[0] = fp(a[0], mod - 2); return; }
Inv(a, b, n >> 1);
int N = 1, lg = 0; init(n + n, N, lg);
rec(i, N) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lg - 1));
rec(i, N) iva[i] = ivb[i] = 0;
rec(i, n) iva[i] = a[i], ivb[i] = b[i];
NTT(iva, N, 1); NTT(ivb, N, 1);
rec(i, N) iva[i] = ((ivb[i] << 1) % mod - mul(iva[i], mul(ivb[i], ivb[i])) + mod) % mod;
NTT(iva, N, -1);
rec(i, n) b[i] = iva[i];
} int inv[sid], ivf[sid], fac[sid];
inline void pre() {
inv[0] = inv[1] = 1;
fac[0] = fac[1] = 1;
rep(i, 2, 200000) fac[i] = mul(fac[i - 1], i);
rep(i, 2, 200000) inv[i] = mul(inv[mod % i], mod - mod / i);
rep(i, 0, 200000) ivf[i] = fp(fac[i], mod - 2);
} inline void wf(int *a, int *b, int n) { for(ri i = 1; i < n; i ++) b[i - 1] = mul(a[i], i); }
inline void jf(int *a, int *b, int n) { for(ri i = 1; i < n; i ++) b[i] = mul(a[i - 1], inv[i]); } int ina[sid], inb[sid];
inline void In(int *a, int *b, int n) {
int N = 1, lg = 0; init(n + n, N, lg);
rec(i, N) ina[i] = inb[i] = 0;
wf(a, ina, n); Inv(a, inb, n);
rec(i, N) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lg - 1));
NTT(ina, N, 1); NTT(inb, N, 1);
rec(i, N) ina[i] = mul(ina[i], inb[i]);
NTT(ina, N, -1); jf(ina, b, n);
} int exa[sid], exb[sid];
inline void Exp(int *a, int *b, int n) {
if(n == 1) { b[0] = 1; return; }
Exp(a, b, n >> 1);
rec(i, n + n) exb[i] = exa[i] = 0;
In(b, exb, n);
int N = 1, lg = 0; init(n + n, N, lg);
rec(i, N) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lg - 1));
rec(i, n) exa[i] = b[i], exb[i] = (a[i] - exb[i] + mod) % mod; exb[0] ++;
NTT(exa, N, 1); NTT(exb, N, 1);
rec(i, N) exa[i] = mul(exa[i], exb[i]);
NTT(exa, N, -1);
rec(i, n) b[i] = exa[i];
} inline int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
} int f[sid], g[sid];
inline void wish() {
rep(i, 1, n) {
if(vis[i]) continue;
int L = 0;
for(ri t = i; !vis[t]; t = p[t]) vis[t] = 1, L ++;
nc[L] ++;
}
pre();
int ret = 1;
rep(i, 1, n) if(nc[i]) {
int v = nc[i];
rep(j, 0, v) f[j] = g[j] = 0;
rep(j, 0, v) {
if(gcd(j * i, n) != j) continue;
f[j] = mul(mul(fac[j - 1], fp(i, j - 1)), ivf[j]);
}
int N = 1;
while(N < v + 5) N <<= 1;
Exp(f, g, N);
ret = mul(ret, mul(g[v], fac[v]));
}
printf("%d\n", ret);
} int main() {
n = read();
rep(i, 1, n) p[i] = read();
wish();
return 0;
}

luoguP4709 信息传递 置换 + 多项式exp的更多相关文章

  1. 洛谷 - Sdchr 的邀请赛 T4 信息传递

    (乱搞艹爆正解系列) 对不起,由于博主太弱了,并不会正解的多项式exp(甚至多项式exp我都不会2333). 只能来说一说我是怎么乱搞的啦QWQ 首先这个题最关键的性质是: 一个在原置换 g 中长度为 ...

  2. tg2015 信息传递 (洛谷p2661)

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  3. [NOIP2015]信息传递

    [NOIP2015]信息传递[问题描述]有

  4. [NOIP2015] 提高组 洛谷P2661 信息传递

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  5. 使用postMesssage()实现跨域iframe页面间的信息传递----转载

    由于web同源策略的限制,当页面使用跨域iframe链接时,主页面与子页面是无法交互的,这对页面间的信息传递造成了不小的麻烦,经过一系列的尝试,最后我发现有以下方法可以实现: 1. 子页面url传参 ...

  6. 洛谷 P2661 信息传递 Label:并查集||强联通分量

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  7. NOIP 2015 信息传递

    kawayi 题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的 ...

  8. AC日记——信息传递 洛谷 P2661 (tarjan求环)

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  9. 2015 NOIP day2 t2 信息传递 tarjan

    信息传递 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.luogu.org/problem/show?pid=2661 Descrip ...

随机推荐

  1. 【转载】Hadoop mapreduce 实现原理

    1.  如何用通俗的方法解释MapReduce MapReduce是Google开源的三大技术之一,是对海量数据进行“分而治之”计算框架.为了简单的理解并讲述给客户理解.我们举下面的例子来说明. 首先 ...

  2. manjaro 的配置

    一.更新源的配置: 1).自动方法: 在 终端 执行下面的命令从官方的源列表中对中国源进行测速和设置 sudo pacman-mirrors -c China 2).手动方法 自动方法(上面的方法1, ...

  3. ubuntu 禁用 guest 账户

    第一步: run the command(s) below:        (编辑如下文件) sudo vi /usr/share/lightdm/lightdm.conf.d/50-ubuntu.c ...

  4. MySQL占用IO过高解决方案【转】

    1.日志产生的性能影响: 由于日志的记录带来的直接性能损耗就是数据库系统中最为昂贵的IO资源.MySQL的日志包括错误日志(ErrorLog),更新日志(UpdateLog),二进制日志(Binlog ...

  5. jvm系列四、jvm知识点总结

    原文链接:http://www.cnblogs.com/ityouknow/p/6482464.html jvm 总体梳理 jvm体系总体分四大块: 类的加载机制 jvm内存结构 GC算法 垃圾回收 ...

  6. python系统编码转换

    # coding:gbk import sys import locale def p(f): print '%s.%s(): %s' % (f.__module__, f.__name__, f() ...

  7. CentOS----kdump failed

    启动提示:Starting kdump [failed] kdump 是一种先进的基于 kexec 的内核崩溃转储机制.当系统崩溃时,kdump 使用 kexec 启动到第二个内核.第二个内核通常叫做 ...

  8. MySQL CPU 使用率高的原因和解决方法

    用户在使用 MySQL 实例时,会遇到 CPU 使用率过高甚至达到 100% 的情况.本文将介绍造成该状况的常见原因以及解决方法,并通过 CPU 使用率为 100% 的典型场景,来分析引起该状况的原因 ...

  9. 矩阵优化dp

    链接:https://www.luogu.org/problemnew/show/P1939 题解: 矩阵优化dp模板题 搞清楚矩阵是怎么乘的构造一下矩阵就很简单了 代码: #include < ...

  10. day6作业--游戏人生完善

    本节作业: 熟练使用类和模块,写一个交互性强.有冲突的程序.     一.作业目的 1.规范程序写法,要按照模块来规范书写: 2.类的使用,文件之间的调用练习: 3.思路的开阔,自己编写冲突,实现调用 ...