前面说过由于GIL的存在,Python的多线程效率没有希望的那么高,python的多线程适合IO密集型的情况,而爬虫恰好就是一个IO密集的情况,因为爬虫中很大一部分时间,是在等待socket返回数据。

下面写一个例子:

import requests
import time if __name__ == '__main__':
codes = ['sh600993', 'sh000006', 'sh600658', 'sh600153', 'sh600005']
start = time.time()
for code in codes:
url = 'http://hq.sinajs.cn/list=' + code
response = requests.get(url).text
print response
print time.time() - start

  

var hq_str_sh600993="马应龙,20.020,20.090,20.060,20.060,19.950,20.040,20.060,486809,9740634.000,2100,20.040,8300,20.030,1300,20.020,2300,20.010,4100,20.000,101,20.060,10000,20.070,14400,20.080,19000,20.090,25700,20.100,2017-01-24,11:30:00,00";

var hq_str_sh000006="地产指数,6567.8364,6574.1060,6568.6375,6577.7249,6542.6599,0,0,1486830,1392918131,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2017-01-24,11:35:51,00";

var hq_str_sh600658="电子城,13.320,13.200,13.270,13.320,13.040,13.270,13.280,559733,7389992.000,30800,13.270,300,13.220,6200,13.200,2500,13.100,4900,13.090,9300,13.280,6400,13.290,8200,13.300,6900,13.310,9000,13.320,2017-01-24,11:30:00,00";

var hq_str_sh600153="建发股份,10.520,10.510,10.500,10.540,10.460,10.490,10.500,4834159,50730040.000,32800,10.490,60100,10.480,186000,10.470,181241,10.460,125800,10.450,56600,10.500,105500,10.510,108400,10.520,110400,10.530,139900,10.540,2017-01-24,11:30:00,00";

var hq_str_sh600005="武钢股份,0.000,3.710,3.710,0.000,0.000,0.000,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,2017-01-24,11:30:00,03";

0.110999822617

  换成多线程之后:

import requests
import threading
import time def get_stock(code):
url = 'http://hq.sinajs.cn/list=' + code
response = requests.get(url).text
# js_info = response.read()
print response if __name__ == '__main__':
codes = ['sh600993', 'sh000006', 'sh600658', 'sh600153', 'sh600005']
start = time.time()
threads = [threading.Thread(target = get_stock,args = (code,)) for code in codes]
for t in threads:
t.start()
for t in threads:
t.join()
print time.time()-start

  

var hq_str_sh600993="马应龙,20.020,20.090,20.060,20.060,19.950,20.040,20.060,486809,9740634.000,2100,20.040,8300,20.030,1300,20.020,2300,20.010,4100,20.000,101,20.060,10000,20.070,14400,20.080,19000,20.090,25700,20.100,2017-01-24,11:30:00,00";

var hq_str_sh600658="电子城,13.320,13.200,13.270,13.320,13.040,13.270,13.280,559733,7389992.000,30800,13.270,300,13.220,6200,13.200,2500,13.100,4900,13.090,9300,13.280,6400,13.290,8200,13.300,6900,13.310,9000,13.320,2017-01-24,11:30:00,00";

var hq_str_sh000006="地产指数,6567.8364,6574.1060,6568.6375,6577.7249,6542.6599,0,0,1486830,1392918131,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2017-01-24,11:35:51,00";

var hq_str_sh600153="建发股份,10.520,10.510,10.500,10.540,10.460,10.490,10.500,4834159,50730040.000,32800,10.490,60100,10.480,186000,10.470,181241,10.460,125800,10.450,56600,10.500,105500,10.510,108400,10.520,110400,10.530,139900,10.540,2017-01-24,11:30:00,00";

var hq_str_sh600005="武钢股份,0.000,3.710,3.710,0.000,0.000,0.000,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,0,0.000,2017-01-24,11:30:00,03";

0.0379998683929

  速度有了很大的提升

线程池

import requests
import threadpool
import time def get_stock(code):
url = 'http://hq.sinajs.cn/list=' + code
response = requests.get(url).text
# js_info = response.read()
print response if __name__ == '__main__':
codes = ['sh600993', 'sh000006', 'sh600658', 'sh600153', 'sh600005']
start = time.time()
pool = threadpool.ThreadPool(5)
tasks = threadpool.makeRequests(get_stock,codes)
[pool.putRequest(task) for task in tasks]
pool.wait()
print time.time() - start

threadpool.ThreadPool定义了一个线程池,表示可以创建4个线程;

makeRequests创建了要开启多线程的函数,已经函数的参数以及回调函数,回调函数callback可以不写,默认是无。

[pool.putRequest(task) for task in tasks]是将所有多线程的请求扔进了线程池,等价于
for code in codes:
pool.putRequest(code)

 pool.wait()是等待所有工作完成后退出。这里执行的数量还比较少,基本的多线程就够用了,当数量多了起来之后,线程池的效果会好一些。

Python 爬虫(2)多线程的更多相关文章

  1. python爬虫之多线程、多进程+代码示例

    python爬虫之多线程.多进程 使用多进程.多线程编写爬虫的代码能有效的提高爬虫爬取目标网站的效率. 一.什么是进程和线程 引用廖雪峰的官方网站关于进程和线程的讲解: 进程:对于操作系统来说,一个任 ...

  2. Python爬虫之多线程下载豆瓣Top250电影图片

    爬虫项目介绍   本次爬虫项目将爬取豆瓣Top250电影的图片,其网址为:https://movie.douban.com/top250, 具体页面如下图所示:   本次爬虫项目将分别不使用多线程和使 ...

  3. Python爬虫之多线程下载程序类电子书

      近段时间,笔者发现一个神奇的网站:http://www.allitebooks.com/ ,该网站提供了大量免费的编程方面的电子书,是技术爱好者们的福音.其页面如下:   那么我们是否可以通过Py ...

  4. Python爬虫之多线程

    详情点我跳转 关注公众号"轻松学编程"了解更多. 多线程 在介绍Python中的线程之前,先明确一个问题,Python中的多线程是假的多线程! 为什么这么说,我们先明确一个概念,全 ...

  5. python爬虫之多线程、多进程、GIL锁

    背景: 我们知道多线程要比多进程效率更高,因为线程存在于进程之内,打开一个进程的话,首先需要开辟内存空间,占用内存空间比线程大.这样想也不怪,比如一个进程用10MB,开10个进程就得100MB的内存空 ...

  6. 【新手必学】Python爬虫之多线程实战

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:清风化煞_   正文 新手注意:如果你学习遇到问题找不到人解答,可以点 ...

  7. Python爬虫进阶 | 多线程

    一.简介 为了提高爬虫程序效率,由于python解释器GIL,导致同一进程中即使有多个线程,实际上也只会有一个线程在运行,但通过request.get发送请求获取响应时有阻塞,所以采用了多线程依然可以 ...

  8. 爬虫篇-python爬虫中多线程的使用

    queue介绍 queue是python的标准库,俗称队列.可以直接import引用,在python2.x中,模块名为Queue.python3直接queue即可 在python中,多个线程之间的数据 ...

  9. Python爬虫练习(多线程,进程,协程抓取网页)

    详情点我跳转 关注公众号"轻松学编程"了解更多. 一.多线程抓取网页 流程:a.设置种子url b.获取区域列表 c.循环区域列表 d.创建线程获取页面数据 e.启动线程 impo ...

  10. Python爬虫的N种姿势

    问题的由来   前几天,在微信公众号(Python爬虫及算法)上有个人问了笔者一个问题,如何利用爬虫来实现如下的需求,需要爬取的网页如下(网址为:https://www.wikidata.org/w/ ...

随机推荐

  1. Python教程(一)Python简介

    Python就为我们提供了非常完善的基础代码库,覆盖了网络.文件.GUI.数据库.文本等大量内容,被形象地称作“内置电池(batteries included)”.用Python开发,许多功能不必从零 ...

  2. ThinkPHP 多语言的实现

    1.按照官方文档进行修改 2.注意区分项目语言包和系统语言包 3.实现语言包和数据库语言同步切换 4.thinkPHP多语言实现与Cookie有关, 谷歌浏览器下按F12查看Request Heade ...

  3. Python并发编程-多进程进程锁

    from multiprocessing import Process import json import time from multiprocessing import Lock def sho ...

  4. redis实现分布式锁工具类 灰常好用

    public interface RedisDistributionLock { /** * 加锁成功,返回加锁时间 * @param lockKey * @param threadName * @r ...

  5. 基于springboot实现http响应异常信息国际化

    背景 国际化是指在设计软件,将软件与特定语言及地区脱钩的过程.当软件被移植到不同的语言及地区时,软件本身不用做内部工程上的改变或修正. 本文提到的异常响应信息国际化是指:前端向后台发起请求,后台在处理 ...

  6. Selenium之PhantomJS相关设置

    设置PhantomJS请求头 默认情况下: from selenium import webdriver import time driver = webdriver.PhantomJS() driv ...

  7. Android签名有什么作用?

    应用程序升级:如果你希望用户无缝升级到新的版本,那么你必须用同一个证书进行签名.这是由于只有以同一个证书签名,系统才会允许安装升级的应用程序.如果你采用了不同的证书,那么系统会要求你的应用程序采用不同 ...

  8. px,dp,sp以及像素密度

    px px(pixel): 像素,是指在由一个数字序列表示的图像中的一个最小单位.在Android中,无论屏幕密度多少,一个像素单位对应一个屏幕像素单位,不会根据屏幕密度自动缩放,因此一般不推荐使用p ...

  9. VK Cup 2016 - Qualification Round 2 A. Home Numbers 水题

    A. Home Numbers 题目连接: http://www.codeforces.com/contest/638/problem/A Description The main street of ...

  10. QTP 10 破解 之路

    1.下载QTP 10 安装包 2.破解软件(mgn-mqt82.exe)  (阿里云云主机里执行不了,一执行CPU就99%,也没有生成lservrc) 手动创建C:\Program Files (x8 ...