UFLDL 教程学习笔记(二)
课程链接:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/
这一节主要讲的是梯度的概念,在实验部分,比较之前的线性回归的梯度与通过定义来计算的梯度,统计二者之间的误差。
线性回归得到的是一个连续值,有时我们想得到0或者1这样的预测值,这就要用到logistic regression。因为要得到的是概率值,
之前的表示函数显然已经不合适了,这时需要用到新的函数来表示:

我们的目标就是对theta做优化,当x属于1时,概率值为1的概率越大越好,反之越小越好。
目标函数当然也得用新的啦(关于这个函数,可参考台大的机器学习基石:http://beader.me/mlnotebook/section3/logistic-regression.html):

作业部分就是训练识别手写0和1,需要注意的仍然是要分清各个变量的维数。跑了下训练准确率和
测试准确率都是100%
参考:http://blog.csdn.net/lingerlanlan/article/details/38390955
代码我加了点注释:
第一段代码改自ex1a_linreg.m,主要就是为了得到训练数据和测试数据,以及它们的标签。
%
%This exercise uses a data from the UCI repository:
% Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
% http://archive.ics.uci.edu/ml
% Irvine, CA: University of California, School of Information and Computer Science.
%
%Data created by:
% Harrison, D. and Rubinfeld, D.L.
% ''Hedonic prices and the demand for clean air''
% J. Environ. Economics & Management, vol.5, 81-102, 1978.
%
addpath ../common
addpath ../common/minFunc_2012/minFunc
addpath ../common/minFunc_2012/minFunc/compiled % Load housing data from file.
data = load('housing.data');
data=data'; % put examples in columns % Include a row of 1s as an additional intercept feature.
data = [ ones(1,size(data,2)); data ]; % Shuffle examples.
data = data(:, randperm(size(data,2)));%返回data的一列数据 % Split into train and test sets取得训练数据和测试数据,并取得相应的标签
% The last row of 'data' is the median home price.
train.X = data(1:end-1,1:400);
train.y = data(end,1:400); test.X = data(1:end-1,401:end);
test.y = data(end,401:end); m=size(train.X,2);
n=size(train.X,1); % Initialize the coefficient vector theta to random values.
theta = rand(n,1);%产生n行1列的在0到1之间的数字 % Run the minFunc optimizer with linear_regression.m as the objective.
%
% TODO: Implement the linear regression objective and gradient computations
% in linear_regression.m
%
tic;
% options = struct('MaxIter', 200);
% theta = minFunc(@linear_regression, theta, options, train.X, train.y);
% fprintf('Optimization took %f seconds.\n', toc); grad_check(@linear_regression,theta,200,train.X,train.y)
第二段代码是grad_check.m函数
function average_error = grad_check(fun, theta0, num_checks, varargin) delta=1e-3;
sum_error=0; fprintf(' Iter i err');
fprintf(' g_est g f\n') for i=1:num_checks
T = theta0;
j = randsample(numel(T),1);%从1~numel(T)中随机返回一个数
T0=T; T0(j) = T0(j)-delta;
T1=T; T1(j) = T1(j)+delta; [f,g] = fun(T, varargin{:});%T为目标函数,varargin为目标函数梯度
f0 = fun(T0, varargin{:});
f1 = fun(T1, varargin{:}); g_est = (f1-f0) / (2*delta);
error = abs(g(j) - g_est); fprintf('% 5d % 6d % 15g % 15f % 15f % 15f\n', ...
i,j,error,g(j),g_est,f); sum_error = sum_error + error;
end average=sum_error/num_checks;
UFLDL 教程学习笔记(二)的更多相关文章
- UFLDL 教程学习笔记(二)反向传导算法
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(四)主成分分析
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(三)自编码与稀疏性
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(一)神经网络
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(三)
教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...
- UFLDL 教程学习笔记(四)
课程地址:http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/ 在之前的练习中,图片比较小, ...
- UFLDL 教程学习笔记(六)主成分分析
教程:http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 以及这篇博文,写的很清楚:http://blog. ...
- UFLDL 教程学习笔记(一)
ufdl的新教程,从基础学起.第一节讲的是线性回归.主要目的是熟悉目标函数,计算梯度和优化. 按着教程写完代码后,总是编译出错,一查是mex的原因,实在不想整了. 这位博主用的是向量,比较简洁:htt ...
- jfinal框架教程-学习笔记(二)
上一节介绍了jfinal框架的简单搭建,这节通过一个小例子了解jfinal的结构和特点 先上图 1.建数据库(我用的是oracle数据库,其他的相对也差不多) -- Create table crea ...
随机推荐
- Codeforces 901C. Bipartite Segments(思维题)
擦..没看见简单环..已经想的七七八八了,就差一步 显然我们只要知道一个点最远可以向后扩展到第几个点是二分图,我们就可以很容易地回答每一个询问了,但是怎么求出这个呢. 没有偶数简单环,相当于只有奇数简 ...
- RabbitMQ 中 Connection 和 Channel 详解
我们知道无论是生产者还是消费者,都需要和 RabbitMQ Broker 建立连接,这个连接就是一条 TCP 连接,也就是 Connection. 一旦 TCP 连接建立起来,客户端紧接着可以创建一个 ...
- BZOJ 3771 母函数裸题
题目描述 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: “这把斧头,是不是你的?” 樵夫一看:“是啊是啊!” 水神把斧头扔在一边,又拿起一个 ...
- 支付宝当面付功能demo运行解读
下载java版本的sdk的demo: 然后拷入idea中: 准备工作: (1)验签工具下载:蚂蚁金服上面下载: https://openclub.alipay.com/read.php?tid=955 ...
- Netlink 介绍(译)
原文地址:http://people.redhat.com/nhorman/papers/netlink.pdf 译文: 1 介绍 在Linux和Unix的众多发行版中的网络配置功能, 都是编程者事后 ...
- python学习(20) 网络编程
原文链接:http://www.limerence2017.com/2018/01/02/python20/ python 网络编程和基本的C语言编程一样,效率不是很高,如果为了封装通信库建议采用C/ ...
- python学习(十九)常见的第三方库
原文链接:http://www.limerence2017.com/2017/12/28/python19/#more 介绍几个python中常见的第三方库. Pillow Pillow简称PIL,是 ...
- error: failed to connect to the hypervisor error: Failed to connect socket to '/var/run/libvirt/libvirt-sock': No such file or directory 解决办法
服务器版本:CentOS Linux release 7.4 Linux lb 3.10.0-693.el7.x86_64 #1 SMP Tue Aug 22 21:09:27 UTC 2017 x8 ...
- python 类与对象解析
类成员: # 字段 - 普通字段,保存在对象中,执行只能通过对象访问 - 静态字段,保存在类中, 执行 可以通过对象访问 也可以通过类访问 # ...
- python中高阶函数与装饰器(2)
函数返回值为内置函数名: def sum(*args): def sum_in(): ax = 0 for n in args: ax = ax ...