课程链接:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/

这一节主要讲的是梯度的概念,在实验部分,比较之前的线性回归的梯度与通过定义来计算的梯度,统计二者之间的误差。

线性回归得到的是一个连续值,有时我们想得到0或者1这样的预测值,这就要用到logistic regression。因为要得到的是概率值,

之前的表示函数显然已经不合适了,这时需要用到新的函数来表示:

我们的目标就是对theta做优化,当x属于1时,概率值为1的概率越大越好,反之越小越好。

目标函数当然也得用新的啦(关于这个函数,可参考台大的机器学习基石:http://beader.me/mlnotebook/section3/logistic-regression.html):

作业部分就是训练识别手写0和1,需要注意的仍然是要分清各个变量的维数。跑了下训练准确率和

测试准确率都是100%

参考:http://blog.csdn.net/lingerlanlan/article/details/38390955

代码我加了点注释:

第一段代码改自ex1a_linreg.m,主要就是为了得到训练数据和测试数据,以及它们的标签。

%
%This exercise uses a data from the UCI repository:
% Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
% http://archive.ics.uci.edu/ml
% Irvine, CA: University of California, School of Information and Computer Science.
%
%Data created by:
% Harrison, D. and Rubinfeld, D.L.
% ''Hedonic prices and the demand for clean air''
% J. Environ. Economics & Management, vol.5, 81-102, 1978.
%
addpath ../common
addpath ../common/minFunc_2012/minFunc
addpath ../common/minFunc_2012/minFunc/compiled % Load housing data from file.
data = load('housing.data');
data=data'; % put examples in columns % Include a row of 1s as an additional intercept feature.
data = [ ones(1,size(data,2)); data ]; % Shuffle examples.
data = data(:, randperm(size(data,2)));%返回data的一列数据 % Split into train and test sets取得训练数据和测试数据,并取得相应的标签
% The last row of 'data' is the median home price.
train.X = data(1:end-1,1:400);
train.y = data(end,1:400); test.X = data(1:end-1,401:end);
test.y = data(end,401:end); m=size(train.X,2);
n=size(train.X,1); % Initialize the coefficient vector theta to random values.
theta = rand(n,1);%产生n行1列的在0到1之间的数字 % Run the minFunc optimizer with linear_regression.m as the objective.
%
% TODO: Implement the linear regression objective and gradient computations
% in linear_regression.m
%
tic;
% options = struct('MaxIter', 200);
% theta = minFunc(@linear_regression, theta, options, train.X, train.y);
% fprintf('Optimization took %f seconds.\n', toc); grad_check(@linear_regression,theta,200,train.X,train.y)

第二段代码是grad_check.m函数

function average_error = grad_check(fun, theta0, num_checks, varargin)

  delta=1e-3;
sum_error=0; fprintf(' Iter i err');
fprintf(' g_est g f\n') for i=1:num_checks
T = theta0;
j = randsample(numel(T),1);%从1~numel(T)中随机返回一个数
T0=T; T0(j) = T0(j)-delta;
T1=T; T1(j) = T1(j)+delta; [f,g] = fun(T, varargin{:});%T为目标函数,varargin为目标函数梯度
f0 = fun(T0, varargin{:});
f1 = fun(T1, varargin{:}); g_est = (f1-f0) / (2*delta);
error = abs(g(j) - g_est); fprintf('% 5d % 6d % 15g % 15f % 15f % 15f\n', ...
i,j,error,g(j),g_est,f); sum_error = sum_error + error;
end average=sum_error/num_checks;

UFLDL 教程学习笔记(二)的更多相关文章

  1. UFLDL 教程学习笔记(二)反向传导算法

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  2. UFLDL 教程学习笔记(四)主成分分析

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  3. UFLDL 教程学习笔记(三)自编码与稀疏性

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  4. UFLDL 教程学习笔记(一)神经网络

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  5. UFLDL 教程学习笔记(三)

    教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...

  6. UFLDL 教程学习笔记(四)

    课程地址:http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/ 在之前的练习中,图片比较小, ...

  7. UFLDL 教程学习笔记(六)主成分分析

    教程:http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 以及这篇博文,写的很清楚:http://blog. ...

  8. UFLDL 教程学习笔记(一)

    ufdl的新教程,从基础学起.第一节讲的是线性回归.主要目的是熟悉目标函数,计算梯度和优化. 按着教程写完代码后,总是编译出错,一查是mex的原因,实在不想整了. 这位博主用的是向量,比较简洁:htt ...

  9. jfinal框架教程-学习笔记(二)

    上一节介绍了jfinal框架的简单搭建,这节通过一个小例子了解jfinal的结构和特点 先上图 1.建数据库(我用的是oracle数据库,其他的相对也差不多) -- Create table crea ...

随机推荐

  1. Codeforces 901C. Bipartite Segments(思维题)

    擦..没看见简单环..已经想的七七八八了,就差一步 显然我们只要知道一个点最远可以向后扩展到第几个点是二分图,我们就可以很容易地回答每一个询问了,但是怎么求出这个呢. 没有偶数简单环,相当于只有奇数简 ...

  2. RabbitMQ 中 Connection 和 Channel 详解

    我们知道无论是生产者还是消费者,都需要和 RabbitMQ Broker 建立连接,这个连接就是一条 TCP 连接,也就是 Connection. 一旦 TCP 连接建立起来,客户端紧接着可以创建一个 ...

  3. BZOJ 3771 母函数裸题

    题目描述 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: “这把斧头,是不是你的?” 樵夫一看:“是啊是啊!” 水神把斧头扔在一边,又拿起一个 ...

  4. 支付宝当面付功能demo运行解读

    下载java版本的sdk的demo: 然后拷入idea中: 准备工作: (1)验签工具下载:蚂蚁金服上面下载: https://openclub.alipay.com/read.php?tid=955 ...

  5. Netlink 介绍(译)

    原文地址:http://people.redhat.com/nhorman/papers/netlink.pdf 译文: 1 介绍 在Linux和Unix的众多发行版中的网络配置功能, 都是编程者事后 ...

  6. python学习(20) 网络编程

    原文链接:http://www.limerence2017.com/2018/01/02/python20/ python 网络编程和基本的C语言编程一样,效率不是很高,如果为了封装通信库建议采用C/ ...

  7. python学习(十九)常见的第三方库

    原文链接:http://www.limerence2017.com/2017/12/28/python19/#more 介绍几个python中常见的第三方库. Pillow Pillow简称PIL,是 ...

  8. error: failed to connect to the hypervisor error: Failed to connect socket to '/var/run/libvirt/libvirt-sock': No such file or directory 解决办法

    服务器版本:CentOS Linux release 7.4 Linux lb 3.10.0-693.el7.x86_64 #1 SMP Tue Aug 22 21:09:27 UTC 2017 x8 ...

  9. python 类与对象解析

    类成员:    # 字段        - 普通字段,保存在对象中,执行只能通过对象访问        - 静态字段,保存在类中,  执行 可以通过对象访问 也可以通过类访问            # ...

  10. python中高阶函数与装饰器(2)

    函数返回值为内置函数名: def sum(*args):    def sum_in():        ax = 0        for n in args:            ax = ax ...