课程链接:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/

这一节主要讲的是梯度的概念,在实验部分,比较之前的线性回归的梯度与通过定义来计算的梯度,统计二者之间的误差。

线性回归得到的是一个连续值,有时我们想得到0或者1这样的预测值,这就要用到logistic regression。因为要得到的是概率值,

之前的表示函数显然已经不合适了,这时需要用到新的函数来表示:

我们的目标就是对theta做优化,当x属于1时,概率值为1的概率越大越好,反之越小越好。

目标函数当然也得用新的啦(关于这个函数,可参考台大的机器学习基石:http://beader.me/mlnotebook/section3/logistic-regression.html):

作业部分就是训练识别手写0和1,需要注意的仍然是要分清各个变量的维数。跑了下训练准确率和

测试准确率都是100%

参考:http://blog.csdn.net/lingerlanlan/article/details/38390955

代码我加了点注释:

第一段代码改自ex1a_linreg.m,主要就是为了得到训练数据和测试数据,以及它们的标签。

%
%This exercise uses a data from the UCI repository:
% Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
% http://archive.ics.uci.edu/ml
% Irvine, CA: University of California, School of Information and Computer Science.
%
%Data created by:
% Harrison, D. and Rubinfeld, D.L.
% ''Hedonic prices and the demand for clean air''
% J. Environ. Economics & Management, vol.5, 81-102, 1978.
%
addpath ../common
addpath ../common/minFunc_2012/minFunc
addpath ../common/minFunc_2012/minFunc/compiled % Load housing data from file.
data = load('housing.data');
data=data'; % put examples in columns % Include a row of 1s as an additional intercept feature.
data = [ ones(1,size(data,2)); data ]; % Shuffle examples.
data = data(:, randperm(size(data,2)));%返回data的一列数据 % Split into train and test sets取得训练数据和测试数据,并取得相应的标签
% The last row of 'data' is the median home price.
train.X = data(1:end-1,1:400);
train.y = data(end,1:400); test.X = data(1:end-1,401:end);
test.y = data(end,401:end); m=size(train.X,2);
n=size(train.X,1); % Initialize the coefficient vector theta to random values.
theta = rand(n,1);%产生n行1列的在0到1之间的数字 % Run the minFunc optimizer with linear_regression.m as the objective.
%
% TODO: Implement the linear regression objective and gradient computations
% in linear_regression.m
%
tic;
% options = struct('MaxIter', 200);
% theta = minFunc(@linear_regression, theta, options, train.X, train.y);
% fprintf('Optimization took %f seconds.\n', toc); grad_check(@linear_regression,theta,200,train.X,train.y)

第二段代码是grad_check.m函数

function average_error = grad_check(fun, theta0, num_checks, varargin)

  delta=1e-3;
sum_error=0; fprintf(' Iter i err');
fprintf(' g_est g f\n') for i=1:num_checks
T = theta0;
j = randsample(numel(T),1);%从1~numel(T)中随机返回一个数
T0=T; T0(j) = T0(j)-delta;
T1=T; T1(j) = T1(j)+delta; [f,g] = fun(T, varargin{:});%T为目标函数,varargin为目标函数梯度
f0 = fun(T0, varargin{:});
f1 = fun(T1, varargin{:}); g_est = (f1-f0) / (2*delta);
error = abs(g(j) - g_est); fprintf('% 5d % 6d % 15g % 15f % 15f % 15f\n', ...
i,j,error,g(j),g_est,f); sum_error = sum_error + error;
end average=sum_error/num_checks;

UFLDL 教程学习笔记(二)的更多相关文章

  1. UFLDL 教程学习笔记(二)反向传导算法

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  2. UFLDL 教程学习笔记(四)主成分分析

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  3. UFLDL 教程学习笔记(三)自编码与稀疏性

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  4. UFLDL 教程学习笔记(一)神经网络

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  5. UFLDL 教程学习笔记(三)

    教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...

  6. UFLDL 教程学习笔记(四)

    课程地址:http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/ 在之前的练习中,图片比较小, ...

  7. UFLDL 教程学习笔记(六)主成分分析

    教程:http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 以及这篇博文,写的很清楚:http://blog. ...

  8. UFLDL 教程学习笔记(一)

    ufdl的新教程,从基础学起.第一节讲的是线性回归.主要目的是熟悉目标函数,计算梯度和优化. 按着教程写完代码后,总是编译出错,一查是mex的原因,实在不想整了. 这位博主用的是向量,比较简洁:htt ...

  9. jfinal框架教程-学习笔记(二)

    上一节介绍了jfinal框架的简单搭建,这节通过一个小例子了解jfinal的结构和特点 先上图 1.建数据库(我用的是oracle数据库,其他的相对也差不多) -- Create table crea ...

随机推荐

  1. bzoj2757【scoi2012】Blinker的仰慕者

    题目描述 Blinker 有非常多的仰慕者,他给每个仰慕者一个正整数编号.而且这些编号还隐藏着特殊的意义,即编号的各位数字之积表示这名仰慕者对Blinker的重要度. 现在Blinker想知道编号介于 ...

  2. SDOI 2019 Round1 游记

    \(SDOI~2019 ~ Round1\) 游记 \(Day ~0\) 报道.骑车子去的,好热.到了之后看到好几个同校神仙,还从那里莫名其妙的等了一会,然后交了钱签了名就拿挂牌走人了.现在居然还有受 ...

  3. HTTP状态码的含义: 200:400:403:404:408:500:503:504

    http协议的状态码 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态码. 100(继续) 请求者应当继续提出请求.服务器返回此代码表示已收到请求的第一部分,正在等待其余部分. 101( ...

  4. hiho一下 第197周 逆序单词

    1.set #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath&g ...

  5. [poj 1533]最长上升子序列nlogn树状数组

    题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...

  6. HTML常用标签-<head>内常用标签

    HTML常用标签-<head>内常用标签 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.HTML是什么     1>.超文本标记语言(Hypertext Ma ...

  7. wsimport生成客户端 指定编码格式

    wsimport -encoding utf- -keep -s D:\temp -p com.lawyer.user -verbose http://服务地址?wsdl -encoding : 指定 ...

  8. 二分算法的应用——Codevs 1766 装果子

    #include<iostream> #include<cstdio> using namespace std; + ; typedef long long LL; LL a[ ...

  9. C#_连接数据库实现 登录注册界面

    //编写登录界面逻辑 using System; using System.Collections.Generic; using System.ComponentModel; using System ...

  10. 让vcmi支持英雄无敌3中文版

    Table of Contents 1 Hack 日志 2 Changes 3 Install by compiling 4 reply of Ivan 1 Hack 日志 8月22日开始动手修改改v ...