UFLDL 教程学习笔记(二)
课程链接:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/
这一节主要讲的是梯度的概念,在实验部分,比较之前的线性回归的梯度与通过定义来计算的梯度,统计二者之间的误差。
线性回归得到的是一个连续值,有时我们想得到0或者1这样的预测值,这就要用到logistic regression。因为要得到的是概率值,
之前的表示函数显然已经不合适了,这时需要用到新的函数来表示:

我们的目标就是对theta做优化,当x属于1时,概率值为1的概率越大越好,反之越小越好。
目标函数当然也得用新的啦(关于这个函数,可参考台大的机器学习基石:http://beader.me/mlnotebook/section3/logistic-regression.html):

作业部分就是训练识别手写0和1,需要注意的仍然是要分清各个变量的维数。跑了下训练准确率和
测试准确率都是100%
参考:http://blog.csdn.net/lingerlanlan/article/details/38390955
代码我加了点注释:
第一段代码改自ex1a_linreg.m,主要就是为了得到训练数据和测试数据,以及它们的标签。
%
%This exercise uses a data from the UCI repository:
% Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
% http://archive.ics.uci.edu/ml
% Irvine, CA: University of California, School of Information and Computer Science.
%
%Data created by:
% Harrison, D. and Rubinfeld, D.L.
% ''Hedonic prices and the demand for clean air''
% J. Environ. Economics & Management, vol.5, 81-102, 1978.
%
addpath ../common
addpath ../common/minFunc_2012/minFunc
addpath ../common/minFunc_2012/minFunc/compiled % Load housing data from file.
data = load('housing.data');
data=data'; % put examples in columns % Include a row of 1s as an additional intercept feature.
data = [ ones(1,size(data,2)); data ]; % Shuffle examples.
data = data(:, randperm(size(data,2)));%返回data的一列数据 % Split into train and test sets取得训练数据和测试数据,并取得相应的标签
% The last row of 'data' is the median home price.
train.X = data(1:end-1,1:400);
train.y = data(end,1:400); test.X = data(1:end-1,401:end);
test.y = data(end,401:end); m=size(train.X,2);
n=size(train.X,1); % Initialize the coefficient vector theta to random values.
theta = rand(n,1);%产生n行1列的在0到1之间的数字 % Run the minFunc optimizer with linear_regression.m as the objective.
%
% TODO: Implement the linear regression objective and gradient computations
% in linear_regression.m
%
tic;
% options = struct('MaxIter', 200);
% theta = minFunc(@linear_regression, theta, options, train.X, train.y);
% fprintf('Optimization took %f seconds.\n', toc); grad_check(@linear_regression,theta,200,train.X,train.y)
第二段代码是grad_check.m函数
function average_error = grad_check(fun, theta0, num_checks, varargin) delta=1e-3;
sum_error=0; fprintf(' Iter i err');
fprintf(' g_est g f\n') for i=1:num_checks
T = theta0;
j = randsample(numel(T),1);%从1~numel(T)中随机返回一个数
T0=T; T0(j) = T0(j)-delta;
T1=T; T1(j) = T1(j)+delta; [f,g] = fun(T, varargin{:});%T为目标函数,varargin为目标函数梯度
f0 = fun(T0, varargin{:});
f1 = fun(T1, varargin{:}); g_est = (f1-f0) / (2*delta);
error = abs(g(j) - g_est); fprintf('% 5d % 6d % 15g % 15f % 15f % 15f\n', ...
i,j,error,g(j),g_est,f); sum_error = sum_error + error;
end average=sum_error/num_checks;
UFLDL 教程学习笔记(二)的更多相关文章
- UFLDL 教程学习笔记(二)反向传导算法
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(四)主成分分析
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(三)自编码与稀疏性
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(一)神经网络
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- UFLDL 教程学习笔记(三)
教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...
- UFLDL 教程学习笔记(四)
课程地址:http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/ 在之前的练习中,图片比较小, ...
- UFLDL 教程学习笔记(六)主成分分析
教程:http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 以及这篇博文,写的很清楚:http://blog. ...
- UFLDL 教程学习笔记(一)
ufdl的新教程,从基础学起.第一节讲的是线性回归.主要目的是熟悉目标函数,计算梯度和优化. 按着教程写完代码后,总是编译出错,一查是mex的原因,实在不想整了. 这位博主用的是向量,比较简洁:htt ...
- jfinal框架教程-学习笔记(二)
上一节介绍了jfinal框架的简单搭建,这节通过一个小例子了解jfinal的结构和特点 先上图 1.建数据库(我用的是oracle数据库,其他的相对也差不多) -- Create table crea ...
随机推荐
- SQL联合查询中的关键语法
http://www.cnblogs.com/aaapeng/archive/2010/01/20/1652151.html 联合查询效率较高.以下例子来说明联合查询的好处 t1表结构(用户名,密码) ...
- 2018 “百度之星”程序设计大赛 - 初赛(A)度度熊学队列 list rope
c++ list使用 #include <cstdio> #include <cstdlib> #include <cmath> #include <cstr ...
- STL中的优先级队列priority_queue
priority_queue(queue类似)完全以底部容器为根据,再加上二叉堆(大根堆或者小根堆)的实现原理,所以其实现非常简单,缺省情况下priority_queue以vector作为底部容器.另 ...
- Linux应用程序设计之网络基础编程
1.TCP/IP协议概述 1.1.OSI参考模型及TCP/IP参考模型 OSI协议参考模型是基于国际标准化组织(ISO)的建议发展起来的,从上到下工分为7层:应用层,表示层,会话层,传输层,网络层,数 ...
- 深入理解Python中的元类(metaclass)
原文 译注:这是一篇在Stack overflow上很热的帖子.提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解.他知道这肯定和自省有关,但仍 ...
- Window10+Python3.5安装opencv
Window10+Python3.5安装opencv 标签: opencvpython 2017-05-14 16:47 2201人阅读 评论(0) 收藏 举报 分类: Python编程(41) ...
- CF&&CC百套计划1 Codeforces Round #449 C. Willem, Chtholly and Seniorious (Old Driver Tree)
http://codeforces.com/problemset/problem/896/C 题意: 对于一个随机序列,执行以下操作: 区间赋值 区间加 区间求第k小 区间求k次幂的和 对于随机序列, ...
- 求助大佬3——hash姿势
某同学的hash姿势: 完整代码:http://www.cnblogs.com/TheRoadToTheGold/p/6370487.html long long get_hash1(long lon ...
- 脑洞 博弈 E. Competitive Seagulls 2017 ACM Arabella Collegiate Programming Contest
题目链接:http://codeforces.com/gym/101350/problem/E 题目大意:给你一个长度为n的方格,方格上面都被染色成了白色.每次染色都是选择白色的,假设目前选择的这块白 ...
- alertdialog 设置最大高度
设置最大高度,有很多方法,我个人比较喜欢的是下面这种方式 ,这里的view即添加到 view.addOnLayoutChangeListener(new View.OnLayoutChangeList ...