传送门

斜率dp经典题目。

然而算斜率的时候并没有注意到下标的平方会爆int于是咕咕*2。


这道题我用了两个数组来表示状态。

f[i]f[i]f[i]表示最后i个位置倒数第i个放木偶的最优值。

g[i]g[i]g[i]表示最后i个位置倒数第i个放塔的最优值。

a[i]a[i]a[i]是倒数第i个放塔的花费

于是有:

g[i]=ming[i]=ming[i]=min{f[i−1],g[i−1]f[i-1],g[i-1]f[i−1],g[i−1]}+a[i]+a[i]+a[i]

f[i]=minf[i]=minf[i]=min{g[j]+(i−j+1)∗(i−j)g[j]+(i-j+1)*(i-j)g[j]+(i−j+1)∗(i−j)}

然后如果k1&lt;k2k1&lt;k2k1<k2&&calc(k1)&gt;calc(k2)calc(k1)&gt;calc(k2)calc(k1)>calc(k2)

=>2∗g[j]−2∗g[i]+j∗j−i∗i−j+i(−i≤2∗i\frac {2*g[j]-2*g[i]+j*j-i*i-j+i}{(-i}\le 2*i(−i2∗g[j]−2∗g[i]+j∗j−i∗i−j+i​≤2∗i(注意下标的乘积是会爆int的!!!)

这样维护一个下凸壳转移就行了。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 1000005
using namespace std;
inline ll read(){
	ll ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
int n,q[N],hd,tl;
ll a[N],f[N],g[N];
inline ll calcX(int i,int j){return j-i;}
inline ll calcY(int i,int j){return 2*g[j]-2*g[i]+1ll*j*j-1ll*i*i-j+i;}
int main(){
	n=read();
	for(int i=n;i;--i)a[i]=read();
	g[1]=a[1],hd=tl=1,q[1]=1,f[1]=2e9;
	for(int i=2;i<=n;++i){
		g[i]=min(f[i-1],g[i-1])+a[i];
		while(hd<tl&&calcY(q[hd],q[hd+1])<=2*i*calcX(q[hd],q[hd+1]))++hd;
		int k=q[hd];
		f[i]=g[k]+1ll*(i-k+1)*(i-k)/2ll;
		while(hd<tl&&calcY(q[tl-1],q[tl])*calcX(q[tl],i)>=calcY(q[tl],i)*calcX(q[tl-1],q[tl]))--tl;
		q[++tl]=i;
	}
	printf("%lld",min(f[n],g[n]));
	return 0;
}

2018.09.29 bzoj3156: 防御准备(斜率优化dp)的更多相关文章

  1. bzoj3156防御准备 斜率优化dp

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2279  Solved: 959[Submit][Status][Discuss ...

  2. BZOJ3156 防御准备 斜率优化dp

    Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...

  3. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  4. bzoj3156 防御准备 - 斜率优化

    Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 102 3 ...

  5. 【BZOJ3156】防御准备 斜率优化DP

    裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...

  6. 2018.09.29 bzoj3675: [Apio2014]序列分割(斜率优化dp)

    传送门 斜率优化dp经典题目. 首先需要证明只要选择的K个断点是相同的,那么得到的答案也是相同的. 根据分治的思想,我们只需要证明有两个断点时成立,就能推出K个断点时成立. 我们设两个断点分成的三段连 ...

  7. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  8. 2018.09.10 bzoj1597: [Usaco2008 Mar]土地购买(斜率优化dp)

    传送门 终究还是通宵了啊... 这是一道简单的斜率优化dp. 先对所有土地排序,显然如果有严格小于的两块土地不用考虑小的一块. 于是剩下的土地有一条边单增,另外一条单减. 我们假设a[i]是单减的,b ...

  9. 2018.09.07 bzoj1096: [ZJOI2007]仓库建设(斜率优化dp)

    传送门 斜率优化dp经典题. 令f[i]表示i这个地方修建仓库的最优值,那么答案就是f[n]. 用dis[i]表示i到1的距离,sump[i]表示1~i所有工厂的p之和,sum[i]表示1~i所有工厂 ...

随机推荐

  1. jap 事务总结

    参考: JPA事务总结 2010年4月13日 - 从表11-2中可以看出,对于不同的EntityManager类型与所运行的环境,所支持的事务类型是不一样的. 其中两种情况下最为简单,一种是容器托管的 ...

  2. VBA 编写类

    一.初识类 现在,请打开你的VBE,主菜单-插入-类模块. 插入了一个类模块,也就建立了一个类.类模块的名字就是类的名字.你现在看到的,她的名字叫“类1”,这是VBA按她姐妹排行给她取的的,是的,VB ...

  3. css 学习网址

    http://www.divcss5.com/ http://www.divcss5.com/css3/  css3手册 http://www.divcss5.com/shouce/ css手册 ht ...

  4. AJAX是什么?

    AJAX的全称是Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). ajax不是新的编程语言,而是一种使用现有标准的新方法.ajax是与服务器 ...

  5. JVM内存管理基础

     JVM 虚拟机架构(图片来源: 浅析Java虚拟机结构与机制) JVM 内存区域 JVM会将Java进程所管理的内存划分为若干不同的数据区域. 这些区域有各自的用途.创建/销毁时间: (图片来源:  ...

  6. mongodb基础学习7-备份与恢复

    下面来讲讲mongodb的备份与恢复 备份可以备份为二进制格式,如果是用于数据交换,可以备份成json或cvs格式 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的. 所以,都有如下通 ...

  7. JAVA学习(七)__Spring的@Autowired注入规则

    @Autowired 默认是按照byType进行注入的,但是当byType方式找到了多个符合的bean,又是怎么处理的? 经过一些代码的测试,我发现,Autowired默认先按byType,如果发现找 ...

  8. Haskell语言学习笔记(57)Parsec(4)

    Parser 类型 data ParsecT s u m a type Parsec s u = ParsecT s u Identity type Parser = Parsec String () ...

  9. ndarray

    ndarray ndarray-多维数组对象 ndarray数组分两部分 实际数据 描述数据的元数据(数据类型/维度等) ndarray所有元素类型相同,下标从0开始 import numpy as ...

  10. maven 项目 编码

    今天在DOS下执行mvn compile命令时报错说缺少必要符号,事实上根本就没有缺少,但何以如此呢,为啥eclipse在编译时就没有这问题呢? 原因是编码的问题造成的! eclipse在编译的使用使 ...