传送门

斜率dp经典题目。

然而算斜率的时候并没有注意到下标的平方会爆int于是咕咕*2。


这道题我用了两个数组来表示状态。

f[i]f[i]f[i]表示最后i个位置倒数第i个放木偶的最优值。

g[i]g[i]g[i]表示最后i个位置倒数第i个放塔的最优值。

a[i]a[i]a[i]是倒数第i个放塔的花费

于是有:

g[i]=ming[i]=ming[i]=min{f[i−1],g[i−1]f[i-1],g[i-1]f[i−1],g[i−1]}+a[i]+a[i]+a[i]

f[i]=minf[i]=minf[i]=min{g[j]+(i−j+1)∗(i−j)g[j]+(i-j+1)*(i-j)g[j]+(i−j+1)∗(i−j)}

然后如果k1&lt;k2k1&lt;k2k1<k2&&calc(k1)&gt;calc(k2)calc(k1)&gt;calc(k2)calc(k1)>calc(k2)

=>2∗g[j]−2∗g[i]+j∗j−i∗i−j+i(−i≤2∗i\frac {2*g[j]-2*g[i]+j*j-i*i-j+i}{(-i}\le 2*i(−i2∗g[j]−2∗g[i]+j∗j−i∗i−j+i​≤2∗i(注意下标的乘积是会爆int的!!!)

这样维护一个下凸壳转移就行了。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 1000005
using namespace std;
inline ll read(){
	ll ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
int n,q[N],hd,tl;
ll a[N],f[N],g[N];
inline ll calcX(int i,int j){return j-i;}
inline ll calcY(int i,int j){return 2*g[j]-2*g[i]+1ll*j*j-1ll*i*i-j+i;}
int main(){
	n=read();
	for(int i=n;i;--i)a[i]=read();
	g[1]=a[1],hd=tl=1,q[1]=1,f[1]=2e9;
	for(int i=2;i<=n;++i){
		g[i]=min(f[i-1],g[i-1])+a[i];
		while(hd<tl&&calcY(q[hd],q[hd+1])<=2*i*calcX(q[hd],q[hd+1]))++hd;
		int k=q[hd];
		f[i]=g[k]+1ll*(i-k+1)*(i-k)/2ll;
		while(hd<tl&&calcY(q[tl-1],q[tl])*calcX(q[tl],i)>=calcY(q[tl],i)*calcX(q[tl-1],q[tl]))--tl;
		q[++tl]=i;
	}
	printf("%lld",min(f[n],g[n]));
	return 0;
}

2018.09.29 bzoj3156: 防御准备(斜率优化dp)的更多相关文章

  1. bzoj3156防御准备 斜率优化dp

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2279  Solved: 959[Submit][Status][Discuss ...

  2. BZOJ3156 防御准备 斜率优化dp

    Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...

  3. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  4. bzoj3156 防御准备 - 斜率优化

    Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 102 3 ...

  5. 【BZOJ3156】防御准备 斜率优化DP

    裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...

  6. 2018.09.29 bzoj3675: [Apio2014]序列分割(斜率优化dp)

    传送门 斜率优化dp经典题目. 首先需要证明只要选择的K个断点是相同的,那么得到的答案也是相同的. 根据分治的思想,我们只需要证明有两个断点时成立,就能推出K个断点时成立. 我们设两个断点分成的三段连 ...

  7. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  8. 2018.09.10 bzoj1597: [Usaco2008 Mar]土地购买(斜率优化dp)

    传送门 终究还是通宵了啊... 这是一道简单的斜率优化dp. 先对所有土地排序,显然如果有严格小于的两块土地不用考虑小的一块. 于是剩下的土地有一条边单增,另外一条单减. 我们假设a[i]是单减的,b ...

  9. 2018.09.07 bzoj1096: [ZJOI2007]仓库建设(斜率优化dp)

    传送门 斜率优化dp经典题. 令f[i]表示i这个地方修建仓库的最优值,那么答案就是f[n]. 用dis[i]表示i到1的距离,sump[i]表示1~i所有工厂的p之和,sum[i]表示1~i所有工厂 ...

随机推荐

  1. 【转】Ultra simple ISO-7816 Interface

    原文出自 http://hilbert-space.de/?p=135 While laying out a PCB for my SWP reader project I realized that ...

  2. webserive学习记录2-cxf框架基础使用

    cxf是一个webservice的框架,类似的还有axis,下面说一下cxf的基本使用. 首先要下载cxf的文件,然后要在项目中引入jar包,当然也可以通过maven进行管理.我用的是最新的3.2.1 ...

  3. Apache Hive 执行HQL语句报错 ( 10G )

    # 故障描述: hive > , ) as uuid, count(distinct(request_body["uuid"])) as count from log_bft ...

  4. JSP页面实现自动跳转

    1 <html><head><script language=javascript> function out(obj) {  var i = obj;  if ( ...

  5. hadoop 集群安装配置 【转】

    http://www.cnblogs.com/ejiyuan/p/5557061.html 注意:要把master 上所有的配置文件(主要是配置的那四个 xxxx-site.xml 和 xxx-env ...

  6. 常见jsp跳转总结

    这次做项目,用到几种不同的JSP跳转的方式,在此总结5中常用方法. 常用的跳转方式有以下几种: (1)href超链接标记,属于客户端跳转 (2)使用javascript完成,属于客户端跳转 (3)提交 ...

  7. ORACLE system表空间满

    解决方法:执行迁移命令,将AUD$表相关移到其它表空间中,也可以新建 一个审计 表空间 / MB DESC) ; alter table aud$ move tablespace SIEBELINDE ...

  8. for of 与 for in 的区别

    遍历数组通常使用for循环,ES5的话也可以使用forEach,ES5具有遍历数组功能的还有map.filter.some.every.reduce.reduceRight等,只不过他们的返回结果不一 ...

  9. haproxy 参数说明

    说明: 1.haproxy的配置段有"global","defaults","listen","frontend"和&q ...

  10. 根据二进制和十进制转换规则转换成游戏[xyytit]

    摘要: 二進位是由十進位轉換而成,它的數字都由1.0組成的.我們研究發現由十進位轉換而成的二進位的數字可以不只局限在於1~127,它的數可以更加深加廣,並且可以利用二進位的規則轉換成遊戲.我們利用2n ...