caffe激活层(Activiation Layers)

在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。

输入:n*c*h*w

输出:n*c*h*w

常用的激活函数有sigmoid, tanh,relu等

1、Sigmoid

  原型:

    

层类型:Sigmoid

 layer {
name: "encode1neuron"
bottom: "encode1"
top: "encode1neuron"
type: "Sigmoid"
}

2、ReLU / Rectified-Linear and Leaky-ReLU

  

ReLU是目前使用最多的激活函数,主要因为其收敛更快,并且能保持同样效果。

标准的ReLU函数为max(x, 0),当x>0时,输出x; 当x<=0时,输出0

f(x)=max(x,0)

层类型:ReLU

可选参数:

  negative_slope:默认为0. 对标准的ReLU函数进行变化,如果设置了这个值,那么数据为负数时,就不再设置为0,而是用原始数据乘以negative_slope

 layer {
name: "relu1"
type: "ReLU"
bottom: "pool1"
top: "pool1"
}

3、TanH / Hyperbolic Tangent

利用双曲正切函数对数据进行变换。

层类型:TanH

layer {
name: "layer"
bottom: "in"
top: "out"
type: "TanH"
}

4、Absolute Value

求每个输入数据的绝对值。

f(x)=Abs(x)

层类型:AbsVal

 layer {
name: "layer"
bottom: "in"
top: "out"
type: "AbsVal"
}

5、Power

对每个输入数据进行幂运算

f(x)= (shift + scale * x) ^ power

层类型:Power

可选参数:

  power: 默认为1

  scale: 默认为1

  shift: 默认为0

 layer {
name: "layer"
bottom: "in"
top: "out"
type: "Power"
power_param {
power: 2
scale: 1
shift: 0
}
}

6、BNLL

binomial normal log likelihood的简称

f(x)=log(1 + exp(x))

层类型:BNLL

layer {
name: "layer"
bottom: "in"
top: "out"
type: “BNLL”
}

参考:http://www.cnblogs.com/denny402/p/5072507.html

3、激活层(Activiation Layers)及参数的更多相关文章

  1. Caffe学习系列(4):激活层(Activiation Layers)及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  2. 转 Caffe学习系列(4):激活层(Activiation Layers)及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  3. [转] caffe视觉层Vision Layers 及参数

    视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经 ...

  4. caffe(4) 激活层(Activation Layers)及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  5. 【转】Caffe初试(六)激活层及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  6. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  7. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  8. [转] caffe激活层及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  9. 激活层和pooling的作用

    激活层: 激活函数其中一个重要的作用是加入非线性因素的,将特征映射到高维的非线性区间进行解释,解决线性模型所不能解决的问题 pooling层: 1. invariance(不变性),这种不变性包括tr ...

随机推荐

  1. STL中mem_fun, mem_fun_ref用法

    1.引言 先看一个STL中for_each的用法: #include <iostream> #include <vector> #include <algorithm&g ...

  2. [c++] polymorphism without virtual function

    polymorphism without virtual function

  3. EZOJ #257

    传送门 分析 先进行缩点 之后从终点倒着跑 对于一组边如果有一个点不能到达则这组边直接废掉 最后看只用没废掉的边能不能从起点走到终点 代码 #include<iostream> #incl ...

  4. Native2Ascii文件转换 -- 待完善

    摘自:https://www.oschina.net/code/snippet_87799_1612 Native2Ascii文件转换 -- 待完善 package com.xxx.xxx.Util; ...

  5. myisam,innodb和memory的区别

    1.myisam,innodb和memory的区别如下: 2:InnoDB存储引擎2.1:InnoDB具有事务,回滚,崩溃修复能力和多版本并发的事务安全2.2:关于InnoDB的auto_increm ...

  6. Python3常见Exception

    异常                                     描述BaseException                    新的所有异常类的基类Exception        ...

  7. 【小梅哥FPGA进阶教程】第十四章 TFT屏显示图片

    十四.TFT屏显示图片 本文由杭电网友曾凯峰贡献,特此感谢 学习了小梅哥的TFT显示屏驱动设计后,想着在此基础上通过TFT屏显示一张图片,有了这个想法就开始动工了.首先想到是利用FPGA内部ROM存储 ...

  8. http-bio-8080"-exec-6

    现象如下:   Tomcat7启动后,后台抛出如下异常,前台一直无法登陆   Exception in thread ""http-bio-8080"-exec-6&qu ...

  9. opencv——设置ROI区域

    #include "stdafx.h" #include<opencv2\opencv.hpp> #include<opencv\cv.h> #includ ...

  10. linux 系统启动

    系统启动流程 BIOS 我们称之为基本输入输出系统,一般保存在主板上的BIOS芯片中,负责检查硬件并且查找可启动设备:可设置启动顺序: 如果一个设备是可启动,那么第一个扇区512字节的最后两字节是55 ...