sklearn特征选择和分类模型

数据格式:

这里。原始特征的输入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2这样的稀疏矩阵的格式。

sklearn中自带了非常多种特征选择的算法。

我们选用特征选择算法的根据是数据集和训练模型。

以下展示chi2的使用例。chi2,採用卡方校验的方法进行特征选择。比較适合0/1型特征和稀疏矩阵。

from sklearn.externals.joblib import Memory
from sklearn.datasets import load_svmlight_file
mem = Memory("./mycache")
@mem.cache
def get_data():
data = load_svmlight_file("labeled_fea.txt")
return data[0], data[1]
X, y = get_data()
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2 data = SelectKBest(chi2, k=10000).fit_transform(X, y) from sklearn.datasets import dump_svmlight_file
dump_svmlight_file(data, y, "labeled_chi2_fea.txt",False)

sklearn中分类模型也非常多,接口统一。非常方便使用。

分类之前。能够不进行特征选择。也能够先独立进行特征选择后再做分类,还能够通过pipeline的方式让特征选择和分类集成在一起。

from sklearn.externals.joblib import Memory
from sklearn.datasets import load_svmlight_file
mem = Memory("./mycache")
@mem.cache
def get_data():
data = load_svmlight_file("labeled_fea.txt")
return data[0], data[1] X, y = get_data() train_X = X[0:800000]
train_y = y[0:800000]
test_X = X[800000:]
test_y = y[800000:]
print(train_X.shape)
print(test_X.shape) from sklearn.feature_selection import SelectKBest, chi2
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.linear_model import RidgeClassifier
from sklearn.linear_model import Perceptron
from sklearn.neighbors import NearestCentroid
from sklearn.linear_model import SGDClassifier
from sklearn.svm import LinearSVC
from sklearn.ensemble import GradientBoostingClassifier
from sklearn import metrics
from time import time #独立的特征选择
ch2 = SelectKBest(chi2, k=10000)
train_X = ch2.fit_transform(train_X, train_y)
test_X = ch2.transform(test_X) #依据一个分类模型。训练模型后。进行測试
def benchmark(clf):
print('_' * 80)
print("Training: ")
print(clf)
t0 = time()
clf.fit(train_X, train_y)
train_time = time() - t0
print("train time: %0.3fs" % train_time)
t0 = time()
pred = clf.predict(test_X)
test_time = time() - t0
print("test time: %0.3fs" % test_time)
score = metrics.accuracy_score(test_y, pred)
print("accuracy: %0.3f" % score)
clf_descr = str(clf).split('(')[0]
return clf_descr, score, train_time, test_time clf = RandomForestClassifier(n_estimators=100)
#clf = RidgeClassifier(tol=1e-2, solver="lsqr")
#clf = Perceptron(n_iter=50)
#clf = LinearSVC()
#clf = GradientBoostingClassifier() #clf = SGDClassifier(alpha=.0001, n_iter=50,penalty="l1")
#clf = SGDClassifier(alpha=.0001, n_iter=50,penalty="elasticnet") #clf = NearestCentroid()
#clf = MultinomialNB(alpha=.01)
#clf = BernoulliNB(alpha=.01) #pipeline模型特征选择和分类模型结合在一起
#clf = Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC())]) benchmark(clf)

值得注意的是,上面的程序训练和预測阶段都是在同一份程序运行。而实际应用中。训练和预測是分开的。因此,要使用python的对象序列化特征。每次训练完之后。序列化模型对象。保存模型的状态,预測时反序列化模型对象。还原模型的状态。

參考资料:

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_svmlight_file.html

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.dump_svmlight_file.html

http://scikit-learn.org/stable/modules/feature_selection.html#feature-selection

http://scikit-learn.org/stable/auto_examples/text/document_classification_20newsgroups.html#example-text-document-classification-20newsgroups-py

本文作者:linger

本文链接:http://blog.csdn.net/lingerlanlan/article/details/47960127

sklearn特征选择和分类模型的更多相关文章

  1. [转载]sklearn多分类模型

    [转载]sklearn多分类模型 这篇文章很好地说明了利用sklearn解决多分类问题时的implement层面的内容:https://www.jianshu.com/p/b2c95f13a9ae.我 ...

  2. sklearn CART决策树分类

    sklearn CART决策树分类 决策树是一种常用的机器学习方法,可以用于分类和回归.同时,决策树的训练结果非常容易理解,而且对于数据预处理的要求也不是很高. 理论部分 比较经典的决策树是ID3.C ...

  3. NLP学习(2)----文本分类模型

    实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...

  4. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  6. sklearn实现多分类逻辑回归

    sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改 ...

  7. 分类模型的F1-score、Precision和Recall 计算过程

    分类模型的F1分值.Precision和Recall 计算过程 引入 通常,我们在评价classifier的性能时使用的是accuracy 考虑在多类分类的背景下 accuracy = (分类正确的样 ...

  8. 笔记︱风控分类模型种类(决策、排序)比较与模型评估体系(ROC/gini/KS/lift)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲 ...

  9. MXNET:分类模型

    线性回归模型适用于输出为连续值的情景,例如输出为房价.在其他情景中,模型输出还可以是一个离散值,例如图片类别.对于这样的分类问题,我们可以使用分类模型,例如softmax回归. 为了便于讨论,让我们假 ...

随机推荐

  1. 使用SpringMVC参数传递时,解决get请求时中文乱码的问题

    问题描述: 使用SpringMVC参数传递时, 遇到get请求中文信息时,页面应答会显示中文乱码. 解决办法: 一,  我们需要把request.getParameter(“参数名”)获取到的字符串先 ...

  2. Tinkoff Internship Warmup Round 2018 and Codeforces Round #475 (Div. 2)

    A. Splits time limit per test 1 second memory limit per test 256 megabytes input standard input outp ...

  3. hdoj--1016<dfs>

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1016 题目描述:1-n的整数排成一个环,首尾相连,相邻的两个数相加是素数,输出满足的排列,1开头输出, ...

  4. php中 ob_start()有什么作用

    <?php ob_start(); //开启缓冲区 echo "这是第一次输出内容!\n"; $ff[1] = ob_get_contents() ; //获取当前缓冲区内容 ...

  5. BZOJ2938 [Poi2000]病毒 【AC自动机】

    题目 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段,试问,是否存在 ...

  6. faster-rcnn 目标检测 数据集制作

    本文的目标是制作目标检测的数据集 使用的工具是 python + opencv 实现目标 1.批量图片重命名,手动框选图片中的目标,将目标框按照一定格式保存到txt中 图片名格式(批量) .jpg . ...

  7. 聊聊 Spring Boot 2.0 的 WebFlux

    聊聊 Spring Boot 2.0 的 WebFlux## 前言 对照下 Spring Web MVC ,Spring Web MVC 是基于 Servlet API 和 Servlet 容器设计的 ...

  8. Codeforces878E. Numbers on the blackboard

    $n \leq 100000$的数列,数字范围$-1e9,1e9$,现$q \leq 1e5$个每次问在一个区间玩游戏,能得到的最大的数.“游戏”:选相邻两个数$a_x,a_y$,然后把他们删掉,变成 ...

  9. VMware锁定文件失败开启模块diskearly的操作失败未能启动虚拟机

      删除虚拟机目录下的(如图中标明的就是D:\VMWorks\YeZiZxWeb这个目录)三个 *.lck文件夹,启动正常

  10. HDU 6218 (线段树+set)

    HDU 6218 Bridge Problem : 给一个2×n的矩阵,一开始矩阵所有相邻点之间有一条边.有其.个询问,每次给出两个相邻的点的坐标,将其中的边删除或者添加,问如此操作之后整张图的割边数 ...