from PIL import Image
import numpy as np
import tensorflow as tf
import time bShowAccuracy = True # 加载手写图片
def loadHandWritingImage(strFilePath):
im = Image.open(strFilePath, 'r')
ndarrayImg = np.array(im.convert("L"), dtype='float') return ndarrayImg # 最大最小值归一化
def normalizeImage(ndarrayImg, maxVal = 255, minVal = 0):
ndarrayImg = (ndarrayImg - minVal) / (maxVal - minVal)
return ndarrayImg # 1)构造自己的手写图片集合,用加载的已训练好的模型识别
print('构造待识别数据...') # 待识别的手写图片,文件名是0...39
fileList = range(0, 39+1) ndarrayImgs = np.zeros((len(fileList), 784)) # x行784列 for index in range(len(fileList)): # 加载图片
ndarrayImg = loadHandWritingImage('28-pixel-numbers/' + str(index) + '.png') # 归一化
normalizeImage(ndarrayImg) # 转为1x784的数组
ndarrayImg = ndarrayImg.reshape((1, 784)) # 加入到测试集中
ndarrayImgs[index] = ndarrayImg ##import sys
##sys.exit() # 构建测试样本的实际值集合,用于计算正确率 # 真实结果,用于测试准确度。40行10列
ndarrayLabels = np.eye(10, k=0, dtype='float')
ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels))
ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels)) # 2)下面开始CNN相关 print('定义Tensor...') #定义变量和计算公式 def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10]) W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 3)创建saver对象并加载模型
print('加载已训练好的CNN模型...')
saver = tf.train.Saver()
saver.restore(sess, "saved_model/cnn_handwrite_number.ckpt") # 测试耗时
print('进行预测:') start = time.time() # 4)执行预测
output = sess.run(y_conv, feed_dict={x: ndarrayImgs, keep_prob:1.0}) end = time.time() print('预测数字为:\n', output.argmax(axis=1)) # axis:0表示按列,1表示按行
print('实际数字为:\n', ndarrayLabels.argmax(axis=1)) if(bShowAccuracy):
accu = accuracy.eval(feed_dict={x: ndarrayImgs, y_: ndarrayLabels, keep_prob: 1.0})
print('识别HateMath苍劲有力的手写数据%d个, 准确率为 %.2f%%, 每个耗时%.5f秒' %
(len(ndarrayImgs), accu*100, (end-start)/len(ndarrayImgs))) # todo
# 图像分割的准确度

使用TensorFlow的卷积神经网络识别手写数字(3)-识别篇的更多相关文章

  1. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  2. TensorFlow卷积神经网络实现手写数字识别以及可视化

    边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190 ...

  3. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  4. 第二节,TensorFlow 使用前馈神经网络实现手写数字识别

    一 感知器 感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695 感知器(Perceptron)是二分类的线性分类模型,其输 ...

  5. 基于卷积神经网络的手写数字识别分类(Tensorflow)

    import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...

  6. TensorFlow(十):卷积神经网络实现手写数字识别以及可视化

    上代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = inpu ...

  7. 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)

    莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...

  8. 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...

  9. PyTorch基础——使用卷积神经网络识别手写数字

    一.介绍 实验内容 内容包括用 PyTorch 来实现一个卷积神经网络,从而实现手写数字识别任务. 除此之外,还对卷积神经网络的卷积核.特征图等进行了分析,引出了过滤器的概念,并简单示了卷积神经网络的 ...

  10. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

随机推荐

  1. 【手撸一个ORM】第一步、实体约定和描述

    一.约定 数据实体必须实现 IEntity 接口,该接口定义了一个int类型的Id属性,既每个实体必须有一个名称为Id的自增主键. 若数据表的主键列名称不是Id,可以通过 [MyKey("主 ...

  2. 074 Search a 2D Matrix 搜索二维矩阵

    编写一个高效的算法来搜索 m x n 矩阵中的一个目标值.该矩阵具有以下特性:    每行中的整数从左到右排序.    每行的第一个整数大于前一行的最后一个整数.例如,以下矩阵:[  [1,   3, ...

  3. #1369 : 网络流一·Ford-Fulkerson算法 模板题

    http://hihocoder.com/problemset/problem/1369?sid=1108721 别人都说先学网络流再学二分图,但是我先学了二分图的,感觉网络流好高端啊. 首先对于原图 ...

  4. h5点击区域和实际区域对不上

    点击区域和实际区域对不上 然后点击后触发的其实是上面的区域,会导致事件触发错误

  5. 洛谷P1965 转圈游戏

    https://www.luogu.org/problem/show?pid=1965 快速幂 #include<iostream> #include<cstdio> #inc ...

  6. HubbleDotNet 使用类

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Hubble.S ...

  7. 原创 html动态表格

    <table id="opttb"> <asp:Repeater ID="tempOptions" runat="server&qu ...

  8. QrenCode : linux命令行下生成二维码图片

    原文链接:http://wowubuntu.com/qrencode.html # 作者:riku/ / 本文采用CC BY-NC-SA 2.5协议授权,转载请注明本文链接. 对于二维码大家应该并不陌 ...

  9. 结合源码看nginx-1.4.0之nginx内存管理详解

    目录 0. 摘要 1. nginx内存结构设计 2. nginx内存数据结构 3. nginx内存管理原理 4. 一个简单的内存模型 5. 小结 6. 参考资料 0. 摘要 内存管理,是指软件运行时对 ...

  10. 深入JVM内核---原理,诊断与优化

    JVM的概念 JAM是Java Virtual Machine的简称.意为Java虚拟机 虚拟机 指通过软件模拟的具有完整硬件系统功能的,运行在一种完整隔离环境中的完整计算机系统 有哪些虚拟机 - V ...