使用TensorFlow的卷积神经网络识别手写数字(3)-识别篇
from PIL import Image
import numpy as np
import tensorflow as tf
import time bShowAccuracy = True # 加载手写图片
def loadHandWritingImage(strFilePath):
im = Image.open(strFilePath, 'r')
ndarrayImg = np.array(im.convert("L"), dtype='float') return ndarrayImg # 最大最小值归一化
def normalizeImage(ndarrayImg, maxVal = 255, minVal = 0):
ndarrayImg = (ndarrayImg - minVal) / (maxVal - minVal)
return ndarrayImg # 1)构造自己的手写图片集合,用加载的已训练好的模型识别
print('构造待识别数据...') # 待识别的手写图片,文件名是0...39
fileList = range(0, 39+1) ndarrayImgs = np.zeros((len(fileList), 784)) # x行784列 for index in range(len(fileList)): # 加载图片
ndarrayImg = loadHandWritingImage('28-pixel-numbers/' + str(index) + '.png') # 归一化
normalizeImage(ndarrayImg) # 转为1x784的数组
ndarrayImg = ndarrayImg.reshape((1, 784)) # 加入到测试集中
ndarrayImgs[index] = ndarrayImg ##import sys
##sys.exit() # 构建测试样本的实际值集合,用于计算正确率 # 真实结果,用于测试准确度。40行10列
ndarrayLabels = np.eye(10, k=0, dtype='float')
ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels))
ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels)) # 2)下面开始CNN相关 print('定义Tensor...') #定义变量和计算公式 def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10]) W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 3)创建saver对象并加载模型
print('加载已训练好的CNN模型...')
saver = tf.train.Saver()
saver.restore(sess, "saved_model/cnn_handwrite_number.ckpt") # 测试耗时
print('进行预测:') start = time.time() # 4)执行预测
output = sess.run(y_conv, feed_dict={x: ndarrayImgs, keep_prob:1.0}) end = time.time() print('预测数字为:\n', output.argmax(axis=1)) # axis:0表示按列,1表示按行
print('实际数字为:\n', ndarrayLabels.argmax(axis=1)) if(bShowAccuracy):
accu = accuracy.eval(feed_dict={x: ndarrayImgs, y_: ndarrayLabels, keep_prob: 1.0})
print('识别HateMath苍劲有力的手写数据%d个, 准确率为 %.2f%%, 每个耗时%.5f秒' %
(len(ndarrayImgs), accu*100, (end-start)/len(ndarrayImgs))) # todo
# 图像分割的准确度
使用TensorFlow的卷积神经网络识别手写数字(3)-识别篇的更多相关文章
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- TensorFlow卷积神经网络实现手写数字识别以及可视化
边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190 ...
- 卷积神经网络CNN 手写数字识别
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...
- 第二节,TensorFlow 使用前馈神经网络实现手写数字识别
一 感知器 感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695 感知器(Perceptron)是二分类的线性分类模型,其输 ...
- 基于卷积神经网络的手写数字识别分类(Tensorflow)
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...
- TensorFlow(十):卷积神经网络实现手写数字识别以及可视化
上代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = inpu ...
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...
- PyTorch基础——使用卷积神经网络识别手写数字
一.介绍 实验内容 内容包括用 PyTorch 来实现一个卷积神经网络,从而实现手写数字识别任务. 除此之外,还对卷积神经网络的卷积核.特征图等进行了分析,引出了过滤器的概念,并简单示了卷积神经网络的 ...
- TensorFlow实战之Softmax Regression识别手写数字
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...
随机推荐
- awk单引号处理
awk中使用单引号,常规字符串,'\''即可,但如果像下面在$4变量用单引号,则还需要加上双引号才行. cat 2.txt | awk '{ print $1, $2, $3, "'\''& ...
- Spring Boot Admin 监控中心
Spring Boot Admin 监控中心 Spring Boot Admin用来收集微服务系统的健康状态.会话数量.并发数.服务资源.延迟等度量信息 服务端 建立spring-cloud-admi ...
- Web前端体系的脉络结构
Web前端技术由 html.css 和 javascript 三大部分构成,是一个庞大而复杂的技术体系,其复杂程度不低于任何一门后端语言.而我们在学习它的时候往往是先从某一个点切入,然后不断地接触和学 ...
- layui内置loading等待加载
点击功能按钮之后 var loading = layer.load(0, { shade: false, time: 2*1000 }); 参数: icon:0,1,2 loading风格 shade ...
- pm2-web监控
pm2-web 是一款 pm2 服务状态监控程序,基于 web . 安装 npm install -g pm2-web 运行(默认占用8080端口) pm2-web 自定义配置文件 通过 --conf ...
- 快速搭建基于Azure Paas的高可用WordPress网站
产品详情 产品介绍 WordPress是一种使用非常广泛的CMS系统.本应用是根据Azure Resource Manager模板创建的.通过该ARM模板可以快速建立web应用和MySQL数据库,部署 ...
- MySQL查询优化方法总结
1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描. 2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉 ...
- TCP连接建立与关闭
http://hi.baidu.com/psorqkxcsfbbghd/item/70f3bd91943b9248f14215cd TCP连接建立与关闭 TCP 是一个面向连接的协议,无论哪一方向另一 ...
- Servlet中的属性(attribute)和参数(parameter)的区别
1.引子 初学者对属性(attribute)和参数(parameter)容易搞混.没搞清他们的区别,项目中就可能出现一此莫名其妙的问题. 2.两者的区别 1) 属性(attribute) 属性是在后台 ...
- 【0624作业】使用Scanner类输入并显示会员卡号
package com.work0624; /** * 练习题 * 使用Scanner类输入并显示会员卡号 * @author L */ import java.util.Scanner; publi ...