题目描述

根据一些书上的记载,上帝的一次失败的创世经历是这样的:
  第一天,上帝创造了一个世界的基本元素,称做“元”。
  第二天,上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
  第三天,上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
  第四天,上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
  如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
  然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
  然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
  至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
  上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
  你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
  一句话题意

输入格式

多组数据,先输入一个整数T,接下来T行,每行一个正整数p,代表你需要取模的值。

输出格式

T行,每行一个正整数,为答案对p取模后的值
输入样例
  3
  2
  3
  6
输出样例
  0
  1
  4
提示
  对于100%的数据,T<=1000,p<=10^7

分析

做这题第一眼还想用mod-2,然后发现p不是质数而且还不会写。。。。。。

索性直接看题解,滚去学了一下欧拉定理和扩展欧拉定理

对于不互质的两个数a与b有以下关系

$$a^{k}\equiv a^{k\%{\varphi (b)}+\varphi (b)}(mod \ b)$$

所以直接对指数递归下去做就好,模数因为是取欧拉函数所以肯定递减,模数减到1的时候就可以直接返回0了

Code

#include<cstdio>
int T;
int phi(int x)
{
int ans=x;
for(int i=;1ll*i*i<=x;i++)
if(x%i==){ans=ans/i*(i-);while(x%i==)x/=i;}
if(x!=)ans=ans/x*(x-);
return ans;
}
int qp(int a,int k,int p)
{
int res=;
while(k)
{
if(k&)res=1ll*a*res%p;
a=1ll*a*a%p;k>>=;
}
return res;
}
int solve(int p)
{
if(p==)return ;
int x=phi(p);
return qp(,solve(x)+x,p);
}
int main()
{
scanf("%d",&T);
for(int t=,p;t<=T;t++)
scanf("%d",&p),printf("%d\n",solve(p));
}

【洛谷】P4139 上帝与集合的正确用法的更多相关文章

  1. 洛谷 P4139 上帝与集合的正确用法 解题报告

    P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...

  2. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  3. 题解-洛谷P4139 上帝与集合的正确用法

    上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...

  4. 洛谷 P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  5. 洛谷P4139 上帝与集合的正确用法 拓欧

    正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) )  ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...

  6. [洛谷P4139]上帝与集合的正确用法

    题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...

  7. P4139 上帝与集合的正确用法

    本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...

  8. Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925

    题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...

  9. luogu P4139 上帝与集合的正确用法(扩展欧拉定理)

    本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...

随机推荐

  1. ToLua Timer机制

    从一个Bug说起: 在内部试玩时发现有个任务的玩家跟随Npc逻辑挂了. telnet连接到出问题的设备上, 开始搞事情 这个跟随的逻辑是一个Timer驱动的. 这个Timer在主角创建时就会启动. 一 ...

  2. 【面试突击】- SpringMVC那些事(一)

    1.什么是Spring MVC ?简单介绍下你对springMVC的理解? Spring MVC是一个基于MVC架构的用来简化web应用程序开发的应用开发框架,它是Spring的一个模块,无需中间整合 ...

  3. 阿里云OSS上传文件demo

    1.安装ali-oss npm install ali-oss --save 2.demo 此例中使用到了ElementUI的el-upload组件.因为样式为自定义的 所以没有用element的自动 ...

  4. 第二章:jQuery初探

    一.引入jQuery XXXX.js文件 <script>标签 1.版本选择 当前jQuery有两个分支 1.x 支持ie6.7.8 jquery-1.11.2.js:未经过压缩,适合同学 ...

  5. SIM7500 SIM7600 SIM800 HTTP

    解释 //Start HTTP service AT+HTTPINIT //Stop HTTP service AT+HTTPTERM //Set HTTP Parameters value /* & ...

  6. ES5_对象 与 继承

    1. 对象的定义 //定义对象 function User(){ //在构造方法中定义属性 this.name = '张三'; this.age = 12; //在构造方法中定义方法: this.ru ...

  7. python的time模块和datetime模块

    1. 将当前时间转成字符串 strftime 方法,并输出 import datetime # 获取当前时间 datetime.datetime.now() print(datetime.dateti ...

  8. Linux操作系统的文件查找工具locate和find命令常用参数介绍

    Linux操作系统的文件查找工具locate和find命令常用参数介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.非实时查找(数据库查找)locate工具  locate命 ...

  9. C++(三十六) — 等号操作符重载、&&,||不可重载

    1.等号操作符重载,实现深拷贝 //等号运算符重载 // obj3=obj1;//原始的是浅拷贝,现在要重载为深拷贝 Name& operator=(Name &obj1) { //1 ...

  10. 2013.6.22 - OpenNE第二天

    果然看中文材料就比较顺利,才半个小时就看完了一篇非常简单的综述<命名实体识别研究进展综述>(孙镇.王惠临).这个是2010年的文章,其实就是一个 科普文章,简述了国内外NER这块的历史如何 ...