A:签到。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 1000000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m;
signed main()
{
n=read(),m=read();
if (m==1) cout<<0;else cout<<n-m;
return 0;
//NOTICE LONG LONG!!!!!
}

  B:若将所有差是(p,q)的点对连接起来,显然会得到若干条链,链的数量即为答案。于是只要统计每种差的出现次数即可。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 1000000010
#define N 55
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
typedef pair<int,int> pii;
int n,ans;
struct data{int x,y;
}a[N];
map<pii,int> f;
signed main()
{
n=read();
for (int i=1;i<=n;i++) a[i].x=read(),a[i].y=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if (i!=j)
{
ans=max(ans,++f[make_pair(a[i].x-a[j].x,a[i].y-a[j].y)]);
}
cout<<n-ans;
return 0;
//NOTICE LONG LONG!!!!!
}

  C:显然应该尽量加正数减负数。但同时容易发现至少有一个数要被减掉,至少有一个数要被加上,所以均为正数或均为负数时稍微修改一下。不妨设是排序后要将前p个数减掉,其他数加上。那么令a1依次减去ap+1~an-1,再令an依次减去a1~ap即可。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 1000000010
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,a[N];
signed main()
{
n=read();
for (int i=1;i<=n;i++) a[i]=read();
sort(a+1,a+n+1);
int p=0;
for (int i=1;i<=n;i++) if (a[i]<0) p=i;
p=max(p,1);p=min(p,n-1);
//让前p个被减掉
int s=0;
for (int i=1;i<=p;i++) s-=a[i];
for (int i=p+1;i<=n;i++) s+=a[i];
cout<<s<<endl;
for (int i=p+1;i<n;i++)
{
printf("%d %d\n",a[p],a[i]);
a[p]-=a[i];
}
printf("%d %d\n",a[n],a[p]);a[n]-=a[p];
for (int i=1;i<p;i++)
{
printf("%d %d\n",a[n],a[i]);
a[n]-=a[i];
}
return 0;
//NOTICE LONG LONG!!!!!
}

  D:显然A到B和B到A的过程是独立的,分别最优化即可。显然就是做一个完全背包。需要注意的是第二次完全背包值域是5000*5000,且答案会爆int。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 1000000010
#define N (5010*5010)
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,a[2][3];
ll f[N];
ll solve(int x,int y,int n)
{
for (int i=0;i<=n;i++) f[i]=i;
for (int i=0;i<3;i++)
for (int j=a[x][i];j<=n;j++)
f[j]=max(f[j],f[j-a[x][i]]+a[y][i]);
return f[n];
}//有n元钱 从x买入 y卖出 最后最多能剩多少
signed main()
{
n=read();
for (int i=0;i<2;i++)
for (int j=0;j<3;j++)
a[i][j]=read();
cout<<solve(1,0,solve(0,1,n));
return 0;
//NOTICE LONG LONG!!!!!
}

  E:设f[i][j]为最大数是i且有j个时的方案数,尴尬的是转移需要用到最小值数量,并且无法记录。但注意到从最小值中挑一个和把一个数变成最大值之一的过程是一一对应的,所以在新增最大值时直接将贡献乘进去即可。那么上面的dp容易得到f[i][j]=f[i][j-1]*j,于是只要记录f[i][1]并转移。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 1000000010
#define N 1000010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,h,d,f[N],sum[N],s,t;
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-2);}
signed main()
{
n=read(),h=read(),d=read();
s=t=1;
for (int i=2;i<=n;i++)
{
t=1ll*t*i%P;
s=(s+t)%P;
}
f[0]=inv(s);sum[0]=f[0];
for (int i=1;i<=h;i++)
{
int u=(sum[i-1]-(i>d?sum[i-d-1]:0)+P)%P;
f[i]=1ll*u*s%P;
sum[i]=(sum[i-1]+f[i])%P;
}
for (int i=n;i>=1;i--) f[h]=1ll*f[h]*i%P;
cout<<f[h];
return 0;
//NOTICE LONG LONG!!!!!
}

  result:rank 98 rating +38

diverta 2019 Programming Contest 2的更多相关文章

  1. AtCoder diverta 2019 Programming Contest 2

    AtCoder diverta 2019 Programming Contest 2 看起来我也不知道是一个啥比赛. 然后就写写题解QWQ. A - Ball Distribution 有\(n\)个 ...

  2. 【AtCoder】diverta 2019 Programming Contest 2

    diverta 2019 Programming Contest 2 A - Ball Distribution 特判一下一个人的,否则是\(N - (K - 1) - 1\) #include &l ...

  3. 【AtCoder】diverta 2019 Programming Contest

    diverta 2019 Programming Contest 因为评测机的缘故--它unrated了.. A - Consecutive Integers #include <bits/st ...

  4. diverta 2019 Programming Contest

    A:签到. #include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 ...

  5. diverta 2019 Programming Contest 2自闭记

    A 签到(a-b problem不用贴了吧,以后atcoder小于300分题均不贴代码) B 发现选择的p,q一定是其中两点间的距离,于是可以O(n2)枚举两点,再O(n2)判断,其实可以做到O(n3 ...

  6. [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)

    [AtCoder] NIKKEI Programming Contest 2019   本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...

  7. [AtCoder] Yahoo Programming Contest 2019

    [AtCoder] Yahoo Programming Contest 2019   很遗憾错过了一场 AtCoder .听说这场是涨分场呢,于是特意来补一下题. A - Anti-Adjacency ...

  8. 模拟赛小结:2017-2018 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2017)

    比赛链接:传送门 本场我们队过的题感觉算法都挺简单的,不知道为啥做的时候感觉没有很顺利. 封榜后7题,罚时1015.第一次模拟赛金,虽然是北欧的区域赛,但还是有点开心的. Problem B Best ...

  9. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

随机推荐

  1. (11)Go方法/接收者

    方法和接收者 Go语言中的方法(Method)是一种作用于特定类型变量的函数.这种特定类型变量叫做接收者(Receiver).接收者的概念就类似于其他语言中的this或者 self. 方法的定义格式如 ...

  2. (7)Go切片

    切片 切片(Slice)是一个拥有相同类型元素的可变长度的序列.它是基于数组类型做的一层封装.它非常灵活,支持自动扩容. 切片是一个引用类型,它的内部结构包含地址.长度和容量.切片一般用于快速地操作一 ...

  3. hbase 整合ranger

    一.安装hbase插件 1.解压安装插件 从target目录下拷贝ranger-2.1.0-SNAPSHOT-hbase-plugin.tar.gz到hbase集群,你的这个包的版本可能跟我不一致. ...

  4. ssh修改默认远程端口

    ---------------------centos6-----------------1.查看系统版本cat /etc/redhot-releose 2.编辑sshd配置,修改默认的端口vim / ...

  5. CS224n学习笔记(二)

    Global Vectors for Word Representation (GloVe) GloVe 模型包含一个训练在单词-单词的共同出现次数上的加权的最小二乘模型. 什么是Co-occurre ...

  6. Java实现Txt转PDF文件

    TxT转PDF可以直接使用IText就可以了,IText在pdf领域可以说暂时是最好的方案了.通过直接读取txt文件,然后生成pdf,再添加文本就可以了. 代码如下: public class Txt ...

  7. mysql union all limit的使用

    To apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the parentheses that enc ...

  8. postgresql 中文排序

    select c_wsxx from fjfl.t_case_anyou order by convert_to(c_wsxx,'GBK') asc;

  9. c# 并行循环支持 async

    var bag = new ConcurrentBag<object>(); var tasks = myCollection.Select(async item => { // s ...

  10. python之fabric(一):环境env (转)

    原文地址:https://my.oschina.net/indestiny/blog/289587 1. fabric有很多可配置的环境,如: user:默认用于ssh登录的本地用户名. passwo ...