牛客网暑期ACM多校训练营(第三场) J Distance to Work 计算几何求圆与多边形相交面积模板
链接:https://www.nowcoder.com/acm/contest/141/J
来源:牛客网
Eddy has M choices to work in the future. For each working place, it can be represented as a point on 2D-plane. And, for each working place, Eddy has two magic parameters P and Q such that if Eddy is going to work in this place, he will choose a place to live which is closer to the working place than portion of all possible living place choices.
Now, Eddy is wondering that for each working place, how far will he lives to the working place. Since Eddy is now busy on deciding where to work on, you come to help him calculate the answers.
For example, if the coordinates of points of Tien-long country is (0,0), (2,0), (2, 2), (0, 2) in counter-clockwise order. And, one possible working place is at (1,1) and P=1, Q=2. Then, Eddy should choose a place to live which is closer to (1, 1) than half of the choices. The distance from the place Eddy will live to the working place will be about 0.7978845608.
输入描述:
The first line contains one positive integer N indicating the number of points of the polygon representing Tien-long country.
Each of following N lines contains two space-separated integer (x
i
, y
i
) indicating the coordinate of i-th points. These points is given in clockwise or counter-clockwise order and form the polygon.
Following line contains one positive integer M indicating the number of possible working place Eddy can choose from.
Each of following M lines contains four space-separated integer x
j
, y
j
, P, Q, where (x
j
, y
j
) indicating the j-th working place is at (x
j
, y
j
) and magic parameters is P and Q.
3 ≤ N ≤ 200
1 ≤ M ≤ 200
1 ≤ P < Q ≤ 200
|x
i
|, |y
i
|, |x
j
|, |y
j
| ≤ 103
It's guaranteed that the given points form a simple polygon.
输出描述:
Output M lines. For i-th line, output one number indicating the distance from the place Eddy will live to the i-th working place. Absolutely or relatively error within 10-6
will be considered correct.
输入例子:
4
0 0
2 0
2 2
0 2
1
1 1 1 2
输出例子:
0.797884560809
-->
输出
1.040111537176
0.868735603376
题意:给你一个多变形,再给你几个圆心点,问每个圆心点的半径为多少时,圆的面积为多边形面积的(1-p/q)
分析:一个多边形与圆相交的模板题,求圆心点半径的时候二分就行,限制二分次数保证精度
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib> using namespace std; const double eps = 1e-9;
const double PI = acos(-1.0); int dcmp(double x)
{
if( x > eps ) return 1;
return x < -eps ? -1 : 0;
} struct Point
{
double x,y;
Point()
{
x = y = 0;
}
Point(double a,double b)
{
x = a;
y = b;
}
inline void input()
{
scanf("%lf%lf",&x,&y);
}
inline Point operator-(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
inline Point operator+(const Point &b)const
{
return Point(x + b.x,y + b.y);
}
inline Point operator*(const double &b)const
{
return Point(x * b,y * b);
}
inline double dot(const Point &b)const
{
return x * b.x + y * b.y;
}
inline double cross(const Point &b,const Point &c)const
{
return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);
}
inline double Dis(const Point &b)const
{
return sqrt((*this-b).dot(*this-b));
}
inline bool InLine(const Point &b,const Point &c)const //三点共线
{
return !dcmp(cross(b,c));
}
inline bool OnSeg(const Point &b,const Point &c)const //点在线段上,包括端点
{
return InLine(b,c) && (*this - c).dot(*this - b) < eps;
}
int operator^(const Point &b) const
{
return y*b.x-x*b.y;
}
}; inline double min(double a,double b)
{
return a < b ? a : b;
}
inline double max(double a,double b)
{
return a > b ? a : b;
}
inline double Sqr(double x)
{
return x * x;
}
inline double Sqr(const Point &p)
{
return p.dot(p);
} Point LineCross(const Point &a,const Point &b,const Point &c,const Point &d)
{
double u = a.cross(b,c), v = b.cross(a,d);
return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v));
} double LineCrossCircle(const Point &a,const Point &b,const Point &r,
double R,Point &p1,Point & p2)
{
Point fp = LineCross(r, Point(r.x+a.y-b.y, r.y+b.x-a.x), a, b);
double rtol = r.Dis(fp);
double rtos = fp.OnSeg(a, b) ? rtol : min(r.Dis(a), r.Dis(b));
double atob = a.Dis(b);
double fptoe = sqrt(R * R - rtol * rtol) / atob;
if( rtos > R - eps ) return rtos;
p1 = fp + (a - b) * fptoe;
p2 = fp + (b - a) * fptoe;
return rtos;
} double SectorArea(const Point &r,const Point &a,const Point &b,double R) //不大于180度扇形面积,r->a->b逆时针
{
double A2 = Sqr(r - a), B2 = Sqr(r - b), C2 = Sqr(a - b);
return R * R * acos( (A2 + B2 - C2) * 0.5 / sqrt(A2) / sqrt(B2)) * 0.5;
} double TACIA(const Point &r,const Point &a,const Point &b,double R)
{
double adis = r.Dis(a), bdis = r.Dis(b);
if( adis < R + eps && bdis < R + eps )
return r.cross(a, b) * 0.5;
Point ta, tb;
if( r.InLine(a,b) ) return 0.0;
double rtos = LineCrossCircle(a, b, r, R, ta, tb);
if( rtos > R - eps )
return SectorArea(r, a, b, R);
if( adis < R + eps )
return r.cross(a, tb) * 0.5 + SectorArea(r, tb, b, R);
if( bdis < R + eps )
return r.cross(ta, b) * 0.5 + SectorArea(r, a, ta, R);
return r.cross(ta, tb) * 0.5 + SectorArea(r, tb, b, R) + SectorArea(r, a, ta, R);
} const int MAXN = 505;
Point p[MAXN]; double SPICA(int n,Point r,double R)
{
int i;
double ret = 0, if_clock_t;
for( i = 0 ; i < n ; ++i )
{
if_clock_t = dcmp(r.cross(p[i], p[(i + 1) % n]));
if( if_clock_t < 0 )
ret -= TACIA(r, p[(i + 1) % n], p[i], R);
else ret += TACIA(r, p[i], p[(i + 1) % n], R);
}
return fabs(ret);
} double ComputePolygonArea(int n)
{
double sum=0;
for(int i=1;i<=n-1;i++)
sum+=(p[i]^p[i-1]);
sum+=(p[0]^p[n-1]);
return fabs(sum/2);
} int main()
{
int n,m;
scanf("%d",&n);///多边形n个顶点
for(int i = 0 ; i < n ; ++i )///顶点坐标
p[i].input();
double polyArea = ComputePolygonArea(n);///计算多边形面积
scanf("%d",&m);
while(m--)
{ Point circle;
circle.input(); ///圆心坐标
int pp,qq;
scanf("%d%d",&pp,&qq);
double area = (1.0-(double)pp/qq)*polyArea; ///二分圆的半径
// printf("%f\n",area);
double l =0, r=1e18;
///固定二分次数
for(int i=1;i<300;i++){
double mid = (l+r)/2.0;
double insection = SPICA(n,circle,mid); ///圆与多边形交的面积
if(insection>area){
r = mid-eps;
}else{
l = mid;
}
}
printf("%.10lf\n",r);
}
return 0;
}
牛客网暑期ACM多校训练营(第三场) J Distance to Work 计算几何求圆与多边形相交面积模板的更多相关文章
- 牛客网暑期ACM多校训练营(第二场)J farm (二维树状数组)
题目链接: https://www.nowcoder.com/acm/contest/140/J 思路: 都写在代码注释里了,非常好懂.. for_each函数可以去看一下,遍历起vector数组比较 ...
- 牛客网 暑期ACM多校训练营(第二场)A.run-动态规划 or 递推?
牛客网暑期ACM多校训练营(第二场) 水博客. A.run 题意就是一个人一秒可以走1步或者跑K步,不能连续跑2秒,他从0开始移动,移动到[L,R]的某一点就可以结束.问一共有多少种移动的方式. 个人 ...
- 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学
牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...
- 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)
2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...
- 牛客网暑期ACM多校训练营(第一场) - J Different Integers(线段数组or莫队)
链接:https://www.nowcoder.com/acm/contest/139/J来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言1048 ...
- 牛客网暑期ACM多校训练营(第九场) A题 FWT
链接:https://www.nowcoder.com/acm/contest/147/A来源:牛客网 Niuniu has recently learned how to use Gaussian ...
- 牛客网暑期ACM多校训练营(第九场)D
链接:https://www.nowcoder.com/acm/contest/147/D来源:牛客网 Niuniu likes traveling. Now he will travel on a ...
- 牛客网暑期ACM多校训练营(第二场)B discount
链接:https://www.nowcoder.com/acm/contest/140/B来源:牛客网 题目描述 White Rabbit wants to buy some drinks from ...
- 2018牛客网暑期ACM多校训练营(第一场)D图同构,J
链接:https://www.nowcoder.com/acm/contest/139/D来源:牛客网 同构图:假设G=(V,E)和G1=(V1,E1)是两个图,如果存在一个双射m:V→V1,使得对所 ...
随机推荐
- js实现3D切换效果
今天分享一个3d翻转动画效果,js+css3+h5实现,没有框架. 先看下html部分: <div class="box"> <ul> <li> ...
- js 实现 联动
使用jQuery实现联动效果 应用场景:收货地址 1.准备三个下拉框 <select class="changeArea" id='province'> <opt ...
- mysql docker 主从配置
主从复制相关 前置条件: docker安装的mysql是5.7.26版本 1. 编排docker-compose文件如下: version: '3' services: mysql-master: v ...
- iView 实现可编辑表格
create at: 2019-02-20 组件 <i-table highlight-row ref="currentRowTable" :columns="co ...
- java web 加载Spring --web.xml 篇
spring是目前最流行的框架.今天谈谈对spring的认识 起步 javaweb中我们首先会遇到的配置文件就是web.xml,这是javaweb为我们封装的逻辑,不在今天的研究中.略过,下面是一个标 ...
- Java 复制PDF文档的2种方法
本文将介绍通过Java程序来复制PDF页面,包括: 跨文档复制,即从文档1复制到文档2 在同一文档内复制,即从页面A复制到页面B 使用工具:Free Spire.PDF for Java (免费版) ...
- let 、const 、var、function声明关键字的新理解
今天在群里看到大佬们讨论let .const 的提升问题,有个大佬问 三种声明都在什么阶段提升? 什么阶段?这个真不清楚,以前是只知道let.const存在死区,没有变量提升,一下子就懵了 后经手 ...
- Dubbo的基本介绍及使用
一,前言 在面对新技术新事物的时候,我们首先应该了解这是一个什么东东,了解为什么使用这门技术,如果我们不使用又会有什么影响.比如,本篇博客介绍Dubbo的基本使用,此时我们应该先要明白我为什么要使 ...
- (三十一)c#Winform自定义控件-文本框(四)
前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...
- HTML文件上传与下载
文件下载 传统的文件下载有两种方法: 使用<a/>标签,href属性直接连接到服务器的文件路径 window.location.href="url" 这两种方法效果一样 ...