链接:https://www.nowcoder.com/acm/contest/141/J
来源:牛客网

Eddy has graduated from college. Currently, he is finding his future job and a place to live. Since Eddy is currently living in Tien-long country, he wants to choose a place inside Tien-long country to live. Surprisingly, Tien-long country can be represented as a simple polygon on 2D-plane. More surprisingly, Eddy can choose any place inside Tien-long country to live. The most important thing Eddy concerns is the distance from his place to the working place. He wants to live neither too close nor too far to the working place. The more specific definition of "close" and "far" is related to working place.

Eddy has M choices to work in the future. For each working place, it can be represented as a point on 2D-plane. And, for each working place, Eddy has two magic parameters P and Q such that if Eddy is going to work in this place, he will choose a place to live which is closer to the working place than portion of all possible living place choices.

Now, Eddy is wondering that for each working place, how far will he lives to the working place. Since Eddy is now busy on deciding where to work on, you come to help him calculate the answers.

For example, if the coordinates of points of Tien-long country is (0,0), (2,0), (2, 2), (0, 2) in counter-clockwise order. And, one possible working place is at (1,1) and P=1, Q=2. Then, Eddy should choose a place to live which is closer to (1, 1) than half of the choices. The distance from the place Eddy will live to the working place will be about 0.7978845608.

输入描述:

The first line contains one positive integer N indicating the number of points of the polygon representing Tien-long country.
Each of following N lines contains two space-separated integer (x

i

, y

i

) indicating the coordinate of i-th points. These points is given in clockwise or counter-clockwise order and form the polygon.
Following line contains one positive integer M indicating the number of possible working place Eddy can choose from.
Each of following M lines contains four space-separated integer x

j

, y

j

, P, Q, where (x

j

, y

j

) indicating the j-th working place is at (x

j

, y

j

) and magic parameters is P and Q.
3 ≤ N ≤ 200
1 ≤ M ≤ 200
1 ≤ P < Q ≤ 200
|x

i

|, |y

i

|, |x

j

|, |y

j

| ≤ 103
It's guaranteed that the given points form a simple polygon.

输出描述:

Output M lines. For i-th line, output one number indicating the distance from the place Eddy will live to the i-th working place.

Absolutely or relatively error within 10-6
 will be considered correct.

输入例子:
4
0 0
2 0
2 2
0 2
1
1 1 1 2
输出例子:
0.797884560809

-->

示例1

输入

复制

4
0 0
2 0
2 2
0 2
1
1 1 1 2

输出

复制

0.797884560809
示例2

输入

复制

3
0 0
1 0
2 1
2
0 0 1 2
1 1 1 3

输出

复制

1.040111537176
0.868735603376
题意:给你一个多变形,再给你几个圆心点,问每个圆心点的半径为多少时,圆的面积为多边形面积的(1-p/q)

分析:一个多边形与圆相交的模板题,求圆心点半径的时候二分就行,限制二分次数保证精度

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib> using namespace std; const double eps = 1e-9;
const double PI = acos(-1.0); int dcmp(double x)
{
if( x > eps ) return 1;
return x < -eps ? -1 : 0;
} struct Point
{
double x,y;
Point()
{
x = y = 0;
}
Point(double a,double b)
{
x = a;
y = b;
}
inline void input()
{
scanf("%lf%lf",&x,&y);
}
inline Point operator-(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
inline Point operator+(const Point &b)const
{
return Point(x + b.x,y + b.y);
}
inline Point operator*(const double &b)const
{
return Point(x * b,y * b);
}
inline double dot(const Point &b)const
{
return x * b.x + y * b.y;
}
inline double cross(const Point &b,const Point &c)const
{
return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);
}
inline double Dis(const Point &b)const
{
return sqrt((*this-b).dot(*this-b));
}
inline bool InLine(const Point &b,const Point &c)const //三点共线
{
return !dcmp(cross(b,c));
}
inline bool OnSeg(const Point &b,const Point &c)const //点在线段上,包括端点
{
return InLine(b,c) && (*this - c).dot(*this - b) < eps;
}
int operator^(const Point &b) const
{
return y*b.x-x*b.y;
}
}; inline double min(double a,double b)
{
return a < b ? a : b;
}
inline double max(double a,double b)
{
return a > b ? a : b;
}
inline double Sqr(double x)
{
return x * x;
}
inline double Sqr(const Point &p)
{
return p.dot(p);
} Point LineCross(const Point &a,const Point &b,const Point &c,const Point &d)
{
double u = a.cross(b,c), v = b.cross(a,d);
return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v));
} double LineCrossCircle(const Point &a,const Point &b,const Point &r,
double R,Point &p1,Point & p2)
{
Point fp = LineCross(r, Point(r.x+a.y-b.y, r.y+b.x-a.x), a, b);
double rtol = r.Dis(fp);
double rtos = fp.OnSeg(a, b) ? rtol : min(r.Dis(a), r.Dis(b));
double atob = a.Dis(b);
double fptoe = sqrt(R * R - rtol * rtol) / atob;
if( rtos > R - eps ) return rtos;
p1 = fp + (a - b) * fptoe;
p2 = fp + (b - a) * fptoe;
return rtos;
} double SectorArea(const Point &r,const Point &a,const Point &b,double R) //不大于180度扇形面积,r->a->b逆时针
{
double A2 = Sqr(r - a), B2 = Sqr(r - b), C2 = Sqr(a - b);
return R * R * acos( (A2 + B2 - C2) * 0.5 / sqrt(A2) / sqrt(B2)) * 0.5;
} double TACIA(const Point &r,const Point &a,const Point &b,double R)
{
double adis = r.Dis(a), bdis = r.Dis(b);
if( adis < R + eps && bdis < R + eps )
return r.cross(a, b) * 0.5;
Point ta, tb;
if( r.InLine(a,b) ) return 0.0;
double rtos = LineCrossCircle(a, b, r, R, ta, tb);
if( rtos > R - eps )
return SectorArea(r, a, b, R);
if( adis < R + eps )
return r.cross(a, tb) * 0.5 + SectorArea(r, tb, b, R);
if( bdis < R + eps )
return r.cross(ta, b) * 0.5 + SectorArea(r, a, ta, R);
return r.cross(ta, tb) * 0.5 + SectorArea(r, tb, b, R) + SectorArea(r, a, ta, R);
} const int MAXN = 505;
Point p[MAXN]; double SPICA(int n,Point r,double R)
{
int i;
double ret = 0, if_clock_t;
for( i = 0 ; i < n ; ++i )
{
if_clock_t = dcmp(r.cross(p[i], p[(i + 1) % n]));
if( if_clock_t < 0 )
ret -= TACIA(r, p[(i + 1) % n], p[i], R);
else ret += TACIA(r, p[i], p[(i + 1) % n], R);
}
return fabs(ret);
} double ComputePolygonArea(int n)
{
double sum=0;
for(int i=1;i<=n-1;i++)
sum+=(p[i]^p[i-1]);
sum+=(p[0]^p[n-1]);
return fabs(sum/2);
} int main()
{
int n,m;
scanf("%d",&n);///多边形n个顶点
for(int i = 0 ; i < n ; ++i )///顶点坐标
p[i].input();
double polyArea = ComputePolygonArea(n);///计算多边形面积
scanf("%d",&m);
while(m--)
{ Point circle;
circle.input(); ///圆心坐标
int pp,qq;
scanf("%d%d",&pp,&qq);
double area = (1.0-(double)pp/qq)*polyArea; ///二分圆的半径
// printf("%f\n",area);
double l =0, r=1e18;
///固定二分次数
for(int i=1;i<300;i++){
double mid = (l+r)/2.0;
double insection = SPICA(n,circle,mid); ///圆与多边形交的面积
if(insection>area){
r = mid-eps;
}else{
l = mid;
}
}
printf("%.10lf\n",r);
}
return 0;
}

  

牛客网暑期ACM多校训练营(第三场) J Distance to Work 计算几何求圆与多边形相交面积模板的更多相关文章

  1. 牛客网暑期ACM多校训练营(第二场)J farm (二维树状数组)

    题目链接: https://www.nowcoder.com/acm/contest/140/J 思路: 都写在代码注释里了,非常好懂.. for_each函数可以去看一下,遍历起vector数组比较 ...

  2. 牛客网 暑期ACM多校训练营(第二场)A.run-动态规划 or 递推?

    牛客网暑期ACM多校训练营(第二场) 水博客. A.run 题意就是一个人一秒可以走1步或者跑K步,不能连续跑2秒,他从0开始移动,移动到[L,R]的某一点就可以结束.问一共有多少种移动的方式. 个人 ...

  3. 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学

    牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...

  4. 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)

    2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...

  5. 牛客网暑期ACM多校训练营(第一场) - J Different Integers(线段数组or莫队)

    链接:https://www.nowcoder.com/acm/contest/139/J来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言1048 ...

  6. 牛客网暑期ACM多校训练营(第九场) A题 FWT

    链接:https://www.nowcoder.com/acm/contest/147/A来源:牛客网 Niuniu has recently learned how to use Gaussian ...

  7. 牛客网暑期ACM多校训练营(第九场)D

    链接:https://www.nowcoder.com/acm/contest/147/D来源:牛客网 Niuniu likes traveling. Now he will travel on a ...

  8. 牛客网暑期ACM多校训练营(第二场)B discount

    链接:https://www.nowcoder.com/acm/contest/140/B来源:牛客网 题目描述 White Rabbit wants to buy some drinks from ...

  9. 2018牛客网暑期ACM多校训练营(第一场)D图同构,J

    链接:https://www.nowcoder.com/acm/contest/139/D来源:牛客网 同构图:假设G=(V,E)和G1=(V1,E1)是两个图,如果存在一个双射m:V→V1,使得对所 ...

随机推荐

  1. MySql数据库操作命令

    数据库 database 命令 ********************************* DATABASE 创建数据库 CREATE DATABASE haodlDB DEFAULT CHA ...

  2. JDK的命令行工具系列 (二) javap、jinfo、jmap

    javap: 反编译工具, 可用来查看java编译器生成的字节码 参数摘要: -help 帮助 -l 输出行和变量的表 -public 只输出public方法和域 -protected 只输出publ ...

  3. div 环形排列

    javascript-按圆形排列DIV元素(一)---- 分析 效果图: 一.分析图: 绿色边框内:外层的DIV元素,相对定位; 白色圆形框:辅助分析的想象形状; 白点:为白色圆形的圆心点,中心点,点 ...

  4. 对比度拉伸(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 对比度拉伸是扩展图像灰度级动态范围的处理.通过在灰度级中确定两个点来控制变换函数的形状.下面是对比度拉伸函数中阈值处理的代码示例,阈值为平均值. 2. 测试结果 图源自skimage ...

  5. Docker笔记(七):常用服务安装——Nginx、MySql、Redis

    开发中经常需要安装一些常用的服务软件,如Nginx.MySql.Redis等,如果按照普通的安装方法,一般都相对比较繁琐 —— 要经过下载软件或源码包,编译安装,配置,启动等步骤,使用 Docker ...

  6. TI MSP430工程配置及2019年电赛A题编程示例(使用430 F5529)

    配置 第一步:右击工程,选择Options 第二步:在General Options的Target选项卡里选择对应的器件Device,这里是MSP430G2231 第三步:在Debugger里选择FE ...

  7. 牛客多校训练第八场G.Gemstones(栈模拟)

    题目传送门 题意: 输入一段字符串,字符串中连续的三个相同的字符可以消去,消去后剩下的左右两段字符串拼接,求最多可消去次数. 输入:ATCCCTTG   输出:2 ATCCCTTG(消去CCC)——& ...

  8. pythonday03数据类型(一)

    今日内容 1.整型 2.布尔型 3.字符串 4.补充 5.作业讲解 6,pycharm自动生成头文件 1.整型(int) py2 int/long 32位电脑:-2147483648-21474836 ...

  9. HelloDjango 第 08 篇:开发博客文章详情页

    作者:HelloGitHub-追梦人物 文中涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 首页展示的是所有文章的列表,当用户看到感兴趣的文章时,他点击文章的标题或者继续阅读的按 ...

  10. 【openmp】for循环的break问题

    问题描述:在用openmp并行化处理for循环的时候,便无法在for循环中用break语句,那么我们如何实现这样的机制呢?在stackoverflow上看到一个不错的回答总结一下. volatile ...