一、概述

理解Hadoop的Shuffle过程是一个大数据工程师必须的,笔者自己将学习笔记记录下来,以便以后方便复习查看。

二、

MapReduce确保每个reducer的输入都是按键排序的。系统执行排序、将map输出作为输入传给reducer的过程称为Shuffle。

2.1 map端

map函数开始产生输出时,利用缓冲的方式写到内存并排序具体分一下几个步骤。

1.map数据分片:把输入数据源进行分片,根据分片来决定有多少个map,每个map任务都有一个环形内存缓冲区用于存储任务输出,默认情况下缓冲区大小为100MB,可通过mapreduce.task.io.sort.mb来调整。

2.map排序:当map缓冲区大小达到阈值时(mapreduce.map.sort.spill.percent),就会将内存的数据溢写到磁盘,根据reducer的来划分成相应的partition,在内存中按键值进行排序,如果有combiner函数,在排序后就会应用,排序后写入分区磁盘文件中。溢写的过程中,map会阻塞直到写磁盘过程完成。每次内存缓冲区到达溢出阈值,就会新建一个溢出文件件,在map写完最后一个输出记录之后,会有几个溢出文件,在任务完成之前溢出文件会被合并成一个已分区且已经排序的输出文件。mapreduce.task.io.sort.factor控制着一次最多能合并多少溜,默认10。mapreduce.map.output.compress进行压缩,提高写磁盘速度。

2.2reduce端

1.reduce复制:reducer通过http得到输出文件的分区,用于文件分区的工作线程数量由任务的mapreduce.shuffle.max.threads属性控制。每个map任务的完成时间不同,在每个任务完成时,reduce任务就开始复制其输出,这就是reduce任务的复制阶段,reduce的复制线程数量mapreduce.reduce.shuffle.parallelcopies决定。

复制详解:如果map输出很小,会被复制到reduce任务JVM的内存,否则输出被复制到磁盘。如果内存缓冲区达到阈值大小(mapreduce.reduce.shuffle.merge.percent)或达到map输出阈值(mapreduce.reduce.merge.inmem.threshold),则合并溢出写到磁盘中,如果指定combiner,则在合并期间运行它。随着磁盘上副本增多,后台线程会将他们合并为更大的,排序的文件。

2.reduce合并排序:这个阶段合并map输出,维持其顺序排序,这是循环进行的,如果有50个map输出,合并因子是10(mapreduce.task.io.sort.factor),合并将进行5次,最后有5个中间文件。

3.reduce:直接把数据输入reduce函数,从而省略了一次磁盘的往返行程。

至此mapreduce过程完毕,具体参考Hadoop权威指南第四版。

Hadoop MapReduce的Shuffle过程的更多相关文章

  1. Hadoop Mapreduce的shuffle过程详解

    1.map task读取数据时默认调用TextInputFormat的成员RecoreReader,RecoreReader调用自己的read()方法,进行逐行读取,返回一个key.value; 2. ...

  2. MapReduce的Shuffle过程介绍

    MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一 ...

  3. Hadoop学习之shuffle过程

    转自:http://langyu.iteye.com/blog/992916,多谢分享,学习Hadopp性能调优的可以多关注一下 Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方, ...

  4. MapReduce:Shuffle过程详解

    1.Map任务处理 1.1 读取HDFS中的文件.每一行解析成一个<k,v>.每一个键值对调用一次map函数.                <0,hello you>   & ...

  5. Hadoop Mapreduce中shuffle 详解

    MapReduce 里面的shuffle:描述者数据从map task 输出到reduce task 输入的这段过程 Shuffle 过程: 首先,map 输出的<key,value >  ...

  6. mapReduce的shuffle过程

    http://www.jianshu.com/p/c97ff0ab5f49 总结shuffle 过程: map端的shuffle: (1)map端产生数据,放入内存buffer中: (2)buffer ...

  7. MapReduce 的 shuffle 过程中经历了几次 sort ?

    shuffle 是从map产生输出到reduce的消化输入的整个过程. 排序贯穿于Map任务和Reduce任务,是MapReduce非常重要的一环,排序操作属于MapReduce计算框架的默认行为,不 ...

  8. Hadoop Mapreduce中wordcount 过程解析

    将文件split 文件1:                                                                   分割结果: hello  world   ...

  9. MapReduce的shuffle过程详解

    [学习笔记] 结果分析:shuffle的英文是洗牌,混洗的意思,洗牌就是越乱越好的意思.当在集群的情况下是这样的,假如有三个map节点和三个reduce节点,一号reduce节点的数据会来自于三个ma ...

随机推荐

  1. Kafka 学习之路(五)—— 深入理解Kafka副本机制

    一.Kafka集群 Kafka使用Zookeeper来维护集群成员(brokers)的信息.每个broker都有一个唯一标识broker.id,用于标识自己在集群中的身份,可以在配置文件server. ...

  2. Azkaban学习之路(四)—— Azkaban Flow 2.0的使用

    一.Flow 2.0 简介 1.1 Flow 2.0 的产生 Azkaban 目前同时支持 Flow 1.0 和 Flow2.0 ,但是官方文档上更推荐使用Flow 2.0,因为Flow 1.0会在将 ...

  3. 一文学会Java死锁和CPU 100% 问题的排查技巧

    做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开 工欲善其事,必先利其器 00 本文简介 作为一名搞技术的程序猿或者是攻城狮,想必你应该是对下面这两个问题有所了解,说不定你在 ...

  4. 2018.11.2 2018NOIP冲刺之最短公共父串

    很有意思的一个题 试题描述 给定字符串A和字符串B,要求找一个最短的字符串,使得字符串A和B均是它的子序列. 输入 输入包含两行,每行一个字符串,分别表示字符串A和字符串B.(串的长度不超过30) 输 ...

  5. C语言学习书籍推荐《C语言入门经典(第4版)》

    霍顿 (Ivor Horton) (作者), 杨浩 (译者) <C语言入门经典(第4版)>的目标是使你在C语言程序设计方面由一位初学者成为一位称职的程序员.读者基本不需要具备任何编程知识, ...

  6. tomcat问题解决

    tomcat问题解决 运行tomcat环境下,idea中出现 error running 项目名address localhost1099 is already in use 的时候,如何解决? 1, ...

  7. 走近Java之HashMap In JDK8

    HashMap,继承AbstractMap类,实现了Map接口,特性是无序不可重复,其本身的数据结构是数组加链表和红黑树.今天我们就一起来详细了解一下. 首先,需要知道,HashMap中几个关键词的含 ...

  8. Spring Boot 2.x (十八):邮件服务一文打尽

    前景介绍 在日常的工作中,我们经常会用到邮件服务,比如发送验证码,找回密码确认,注册时邮件验证等,所以今天在这里进行邮件服务的一些操作. 大致思路 我们要做的其实就是把Java程序作为一个客户端,然后 ...

  9. ElementUI 源码简析——源码结构篇

    ElementUI 作为当前运用的最广的 Vue PC 端组件库,很多 Vue 组件库的架构都是参照 ElementUI 做的.作为一个有梦想的前端(咸鱼),当然需要好好学习一番这套比较成熟的架构. ...

  10. ServiceFabric极简文档-1.3删除群集

    删除群集 若要删除群集,请运行包文件夹中的 RemoveServiceFabricCluster.ps1 Powershell 脚本,并传入 JSON 配置文件的路径. 可以选择性地指定删除日志的位置 ...