【题目】

输入一棵二元树的根结点,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。

例如

10
                                          /     \
                                        6        14
                                      /         /   \
                                    4         12     16

输出该树的深度3。

【分析】

这道题本质上还是考查二元树的遍历。题目给出了一种树的深度的定义。当然,我们可以按照这种定义去得到树的所有路径,也就能得到最长路径以及它的长度。只是这种思路用来写程序有点麻烦。

我们还可以从另外一个角度来理解树的深度。如果一棵树只有一个结点,它的深度为1。如果根结点只有左子树而没有右子树,那么树的深度应该是其左子树的深度加1;同样如果根结点只有右子树而没有左子树,那么树的深度应该是其右子树的深度加1。如果既有右子树又有左子树呢?那该树的深度就是其左、右子树深度的较大值再加1。

上面的这个思路用递归的方法很容易实现,只需要对遍历的代码稍作修改即可。

【代码】

 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
///////////////////////////////////////////////////////////////////////
// Get depth of a binary tree
// Input: pTreeNode - the head of a binary tree
// Output: the depth of a binary tree
///////////////////////////////////////////////////////////////////////
int TreeDepth(SBinaryTreeNode *pTreeNode)
{
    // the depth of a empty tree is 0
    if(NULL == pTreeNode)
        ;

// the depth of left sub-tree
    int nLeft = TreeDepth(pTreeNode->m_pLeft);
    // the depth of right sub-tree
    int nRight = TreeDepth(pTreeNode->m_pRight);

// depth is the binary tree
);
    // return max(nLeft,nRight)+1;
}

【参考】

http://zhedahht.blog.163.com/blog/static/25411174200732975328975/

27.二元树的深度[BinaryTreeDepth]的更多相关文章

  1. 笔试算法题(27):判断单向链表是否有环并找出环入口节点 & 判断两棵二元树是否相等

    出题:判断一个单向链表是否有环,如果有环则找到环入口节点: 分析: 第一个问题:使用快慢指针(fast指针一次走两步,slow指针一次走一步,并判断是否到达NULL,如果fast==slow成立,则说 ...

  2. 12.从上往下遍历二元树[LevelOrderOfBinaryTree]

    [题目] 输入一颗二元树,从上往下按层打印树的每个结点,同一层中按照从左往右的顺序打印. 例如输入 8    /  \   6    10  /\     /\ 5  7   9  11 输出8    ...

  3. xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?

    问题: 用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了.但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高.用RandomFore ...

  4. 小小c#算法题 - 10 - 求树的深度

    树型结构是一类重要的非线性数据结构,树是以分支关系定义的层次结构,是n(n>=0)个结点的有限集.关于树的基本概念不再作过多陈述,相信大家都有了解,如有遗忘,可翻书或去其他网页浏览以温习. 树中 ...

  5. AlphaGo原理-蒙特卡罗树搜索+深度学习

    蒙特卡罗树搜索+深度学习 -- AlphaGo原版论文阅读笔记     目录(?)[+]   原版论文是<Mastering the game of Go with deep neural ne ...

  6. 笔试算法题(25):复制拥有多个指针的链表 & 判断二元树B是否为A的子树

    出题:定义一个复杂链表:在单向链表的基础上,每个节点附加一个指向链表中其他任意节点的指针sibling,实现CNode* Clone(Cnode *head)函数复制这个复杂链表: 分析: 解法1:将 ...

  7. 【C++竞赛 D】树的深度

    时间限制:1s 内存限制:32MB 问题描述 数据结构中定义,树的高度为一棵树中所有节点的层次的最大值.现在yyy有一棵树请你帮他求出该树的高度. 输入描述 第一行一个整数T(1≤T≤20)表示数据组 ...

  8. 数据结构5_java---二叉树,树的建立,树的先序、中序、后序遍历(递归和非递归算法),层次遍历(广度优先遍历),深度优先遍历,树的深度(递归算法)

    1.二叉树的建立 首先,定义数组存储树的data,然后使用list集合将所有的二叉树结点都包含进去,最后给每个父亲结点赋予左右孩子. 需要注意的是:最后一个父亲结点需要单独处理 public stat ...

  9. PAT-1021 Deepest Root (25 分) 并查集判断成环和联通+求树的深度

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...

随机推荐

  1. zabbix_监控_进程

        一.根据进程名称监控 1.创建Item(只能通过进程名.用户过滤进程)  http://www.2cto.com/os/201405/302249.html http://www.ithao1 ...

  2. Hibernate-一级缓存session

    hibernate提供的一级缓存 hibernate是一个线程对应一个session,一个线程可以看成一个用户.也就是说session级缓存(一级缓存)只能给一个线程用,别的线程用不了,一级缓存就是和 ...

  3. StyleCop的常见错误

    所有规则的翻译(基于版本4.7.44.0): 文档规则 1.SA1600:ElementsMustBeDocumented元素必须添加注释 2.SA1601: PartialElementsMustB ...

  4. FFTW中文参考

    据说FFTW(Fastest Fourier Transform in the West)是世界上最快的FFT.为了详细了解FFTW以及为编程方便,特将用户手册看了一下,并结合手册制作了以下FFTW中 ...

  5. java订电影票系统

    public class Test { public static void main(String[] args) { BookTicket bookTicket = new BookTicket( ...

  6. 轻量级应用开发之(08)UITableView

    一  UITableView基本介绍 在众多移动应⽤用中,能看到各式各样的表格数据 . 在iOS中,要实现表格数据展示,最常用的做法就是使用UITableView,UITableView继承自UISc ...

  7. MyEclipse修改项目名称后,部署到 tomcat问题

    问题描述: 修改项目名称后,部署到tomcat问题 解决方案: 项目->属性->myelcipse->web下,修 改web context root就可! 要在eclipse里面改 ...

  8. MyEclipse------在特定目录创建文件和书写内容

    readwrite.jsp <%@ page language="java" import="java.util.*" pageEncoding=&quo ...

  9. IF IE

    1. <!--[if !IE]><!--> 除IE外都可识别 <!--<![endif]-->2. <!--[if IE]> 所有的IE可识别 & ...

  10. controller传值view

    400错误是请求错误 Model是map格式 @Controller public class HelloController { //view的值传给controller @RequestMappi ...