网格动物UVA1602
题目大意
输入n,w,h(1<=n<=10,1<=w,h<=n).求能放在w*h网格里的不同的n连块的个数(平移,旋转,翻转算一种)
首先,方法上有两个,一是打表,dfs构造连通块,枚举出来后再进行判重,另一种就是直接枚举每种连通块,保证每种连通块只枚举一次(这个方法还不会。。但可以访问en.wikipedia.org/wiki/Polyomino 进行学习)
先看第一种方法:
1.如何构造连通块?
因为是构造连通块,所以就不能像寻找连通块或寻找路径那么做。。。一开始就犯了这种错误。。应该从大小为X(初始时X为1)的连通块开始,尝试从它的每一个边向外扩展,得到一个大小为X+1的连通块,并把这个连通块来判重,如果没有重,那么就将构成它的每一小块的坐标记录下来,为接下来用这个连通块构造更大的连通块做准备。如此循环往复,直到你求得大小为n的所有连通块。
2.如何进行判重?
判重也是这个题中很麻烦的一个点。。大体上的思路就是用存下每个连通块的状态,包括它们进行一系列变化后的状态。在存储这些千奇百怪的连通块时,务必保证把每个连通块顶着二维平面的左上角存,即以(0,0)为中心,将它们坐标标准化。(意会一下。。)如果你用的是set来存储以前构造到的连通块,那么你在判重的时候可以简单地用count函数,如果是其他数据类型,就只能挨个枚举比较了
点击查看代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 10;
struct cell {//块
int x, y;
cell(int x1, int y1):x(x1),y(y1) {}
bool operator<(const cell& a)const {//因为set需要定义<
return x < a.x || ((x == a.x) && y < a.y);
}
};
typedef set<cell> poly;//n连块
set<poly> poly_set[maxn+1];//poly_set[i]是含i个块的(规范化的poly)的集合
int ans[maxn+1][maxn+1][maxn+1];//存答案
int dx[4] = { -1,0,1,0 };
int dy[4] = { 0,1,0,-1 };
poly normalize(poly p) {//规范化,贴着左上角。可能并不占据(0,0)这个点。
poly newp;
int minx = p.begin()->x, miny = p.begin()->y;
for (auto q = p.begin(); q != p.end(); q++) {
minx = min(minx, q->x);
miny = min(miny, q->y);
}
for (auto q = p.begin(); q != p.end(); q++)
newp.insert(cell(q->x - minx, q->y - miny));
return newp;
}
poly rotate(poly p) {//顺指针旋转90°
poly newp;
for (auto q = p.begin(); q != p.end(); q++)
newp.insert(cell(q->y, -q->x));
return normalize(newp);
}
poly flip(poly p) {//上下翻转
poly newp;
for (auto q = p.begin(); q != p.end(); q++)
newp.insert(cell(q->x, -q->y));
return normalize(newp);
}
void check_poly(poly p, cell& c) {//c能否放进p中
p.insert(c);
p = normalize(p);//规范化
int n = p.size();
//旋转八个方向,如果不存在的话加入到poly_set
for (int i = 0; i < 4; i++) {
if (poly_set[n].count(p))
return;
p = rotate(p);//顺时针旋转90°
}
p = flip(p);//翻转
for (int i = 0; i < 4; i++) {
if (poly_set[n].count(p))
return;
p = rotate(p);//顺时针旋转90°
}
poly_set[n].insert(p);
}
void gen_poly() {//生成所有poly
for (int i = 1; i <= maxn; i++)
poly_set[i] = set<poly>();
//先生成含1个cell的poly
poly p1;
p1.insert(cell(0, 0));
poly_set[1].insert(p1);
//int c = 0; //用来看运算量 60000 在我的电脑上用了十几秒但交上去能过,挺玄学的
//根据含i-1个cell的poly_set推出含i个的poly_set
for (int i = 2; i <= maxn; i++)
for (auto p = poly_set[i - 1].begin(); p != poly_set[i - 1].end(); p++)
//p类型是set<poly>::iterator
for (auto q = p->begin(); q != p->end(); q++) {
//q类型是set<cell>::iterator ,也就是poly::iterator
for (int j = 0; j < 4; j++) {
/*if (c++ % 10000==0) {
cout << c / 10000;
}*/
cell newc(q->x + dx[j], q->y + dy[j]);
if (!p->count(newc))//p中没有newc这个cell,就加入
check_poly(*p, newc);//别忘p是迭代器
}
}
for (int i = 1; i <= maxn; i++)//i连块
for (int w = 1; w <= i; w++)
for (int h = 1; h <= i; h++) {
int count = 0;
for (auto p = poly_set[i].begin(); p != poly_set[i].end(); p++) {
int maxx = p->begin()->x, maxy = p->begin()->y;
for (auto q = p->begin(); q != p->end(); q++) {
maxx = max(maxx, q->x);
maxy = max(maxy, q->y);
}
if(min(maxx,maxy)<min(w,h)&&max(maxx,maxy)<max(h,w))
//因为有两种摆法:横放或竖放。是(maxx<w&&maxy<h)||(maxx<h&&maxy<w)的简写
//为什么没有等于?因为规范化的时候左上角是(0,0)
count++;
}
ans[i][w][h] = count;
}
}
int main() {
gen_poly();//生成所有poly并存答案
cout << 1;
int n, w, h;
while (scanf_s("%d %d %d", &n, &w, &h) == 3)
cout << ans[n][w][h] << endl;
return 0;
}
从做这道题的过程中又能学到什么?
1.状态的记录方式可以灵活。比如这一个题,就没有死板地记录每一种连通块旋转,对称后的样子,而是通过flip,rotate等几个函数临时处理,既提高了效率,又简洁了代码。
2.枚举连通块时,可以通过以前枚举过的连通块向外扩展
3关于set的灵活使用.这一道题利用了set的count和有序的性质方便了判重的进行,同时在迭代的过程中的迭代器使用方法也值得学习
网格动物UVA1602的更多相关文章
- UVA1602 Lattice Animals 网格动物 (暴力,STL)
多联骨牌的生成办法,维基上只找到固定的骨牌fix,而free的没有找到. 于是只好写个set判重的简单枚举了. 旋转的操作,可以在坐标轴上画个点,以原点为轴心,逆时针旋转90度,新的点的坐标为(-y, ...
- UVa 1602 网格动物(回溯)
https://vjudge.net/problem/UVA-1602 题意:计算n连通块不同形态的个数. 思路: 实在是不知道该怎么做好,感觉判重实在是太麻烦了. 判重就是判断所有格子位置是否都相同 ...
- ACM题目————网格动物
Lattice animal is a set of connected sites on a lattice. Lattice animals on a square lattice are esp ...
- 从零开始一起学习SLAM | 点云到网格的进化
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文编程练习框架及数据获取方法见文末获取方式 菜单栏点击"知识星球"查看「从零开始学习SLAM」一 ...
- 支持向量机(SVM)利用网格搜索和交叉验证进行参数选择
上一回有个读者问我:回归模型与分类模型的区别在哪?有什么不同,我在这里给他回答一下 : : : : 回归问题通常是用来预测一个值,如预测房价.未来的天气情况等等,例如一个产品的实际价格为500元,通过 ...
- UVA-1602 Lattice Animals 搜索问题(打表+set)
题目链接 https://vjudge.net/problem/UVA-1602 紫书的一道例题,跟之前的很多题目有很多不同. 本题不像是一般的dfs或bfs这样的搜索套路,而是另一种枚举思路. 题意 ...
- C#中如何创建PDF网格并插入图片
这篇文章我将向大家演示如何以编程的方式在PDF文档中创建一个网格,并将图片插入特定的网格中. 网上有一些类似的解决方法,在这里我选择了一个免费版的PDF组件.安装控件后,创建新项目,添加安装目录下的d ...
- pcl曲面网格模型的三种显示方式
pcl网格模型有三种可选的显示模式,分别是面片模式(surface)显示,线框图模式(wireframe)显示,点模式(point)显示.默认为面片模式进行显示.设置函数分别为: void pcl:: ...
- 从点云到网格(三)Poisson重建
Possion重建是Kazhdan等2006年提出的网格重建方法[1].Possion重建的输入是点云及其法向量,输出是三维网格.Poisson有公开的源代码[2].PCL中也有Poisson的实现. ...
随机推荐
- CentOS 7 执行 yum 命令失败问题的排查方法
一个执着于技术的公众号 简介 本文主要为大家讲解 CentOS 7系统中执行yum命令失败等常见问题的排查方法. 1.执行yum命令报404错误 1)检查yum仓库是否配置正确,可以到阿里云下载rep ...
- Flutter 状态管理框架 Provider 和 Get 分析
文/ Nayuta,CFUG 社区 状态管理一直是 Flutter 开发中一个火热的话题.谈到状态管理框架,社区也有诸如有以 Get.Provider 为代表的多种方案,它们有各自的优缺点. 面对这么 ...
- 在GO中调用C源代码#基础篇1
开坑说明 最近在编写客户端程序或与其他部门做功能集成时多次碰到了跨语言的sdk集成,虽说方案很多诸如rpc啊,管道啊,文件io啊,unix socket啊之类的不要太多,但最完美的基础方式还是让程序与 ...
- 腾讯tbs 内存泄露
一.背景 TBS(腾讯浏览服务)是腾讯提供的移动端webview体验的整套解决方案(https://x5.tencent.com/docs/index.html),可以用于移动端加载doc.xls.p ...
- 使用虚拟机在3台centos7系统安装docker和k8s集群
一.安装docker 环境:准备3台centos7系统,都安装上docker环境,具体安装步骤和流程如下 参考: https://docs.docker.com/install/linux/docke ...
- 第06组 Beta冲刺 (2/5)
目录 1.1 基本情况 1.2 冲刺概况汇报 1.郝雷明 2. 方梓涵 3.杜筱 4.黄少丹 5. 董翔云 6.鲍凌函 7.詹鑫冰 8.曹兰英 9.曾丽莉 10.吴沅静 1.3 冲刺成果展示 1.1 ...
- 12.MYSQL基础-常见函数
4. 常见函数 一.字符函数 概念 类似于Java的方法,将一组逻辑语句封装在方法中,对外暴露方法名 优点 隐藏了实现细节 提高代码的重用性 调用 select 函数名(实参列表) [ from 表] ...
- 基于PYQT5的截图翻译工具
基于PYQT5的截图翻译工具 功能介绍 翻译功能 截图功能(快捷键 + 截图存储到剪切板中) 文字识别OCR(基于百度API的文字识别) UI 界面 截图 截图可以使用第三方截图 或 使用PyQt5截 ...
- Nginx安装及支持https代理配置和禁用TSLv1.0、TSLv1.1配置
Linux安装Nginx Nginx安装及支持https代理配置和禁用TSLv1.0.TSLv1.1配置. 下载安装包 [root@localhost ~]# wget http://nginx.or ...
- Maven POM文件介绍
1. POM文件是什么 1.1 Super POM 1.2 Minimal POM 1.3 Effective POM 3. 项目继承 和 项目聚合 2.1 Project Inheritance 项 ...