Educational Codeforces Round 40 G. Castle Defense (二分+滑动数组+greedy)
G. Castle Defense
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Today you are going to lead a group of elven archers to defend the castle that is attacked by an army of angry orcs. Three sides of the castle are protected by impassable mountains and the remaining side is occupied by a long wall that is split into n sections. At this moment there are exactly a**i archers located at the i-th section of this wall. You know that archer who stands at section i can shoot orcs that attack section located at distance not exceeding r, that is all such sections j that |i - j| ≤ r. In particular, r = 0 means that archers are only capable of shooting at orcs who attack section i.
Denote as defense level of section i the total number of archers who can shoot at the orcs attacking this section. Reliability of the defense plan is the minimum value of defense level of individual wall section.
There is a little time left till the attack so you can't redistribute archers that are already located at the wall. However, there is a reserve of k archers that you can distribute among wall sections in arbitrary way. You would like to achieve maximum possible reliability of the defence plan.
Input
The first line of the input contains three integers n, r and k (1 ≤ n ≤ 500 000, 0 ≤ r ≤ n, 0 ≤ k ≤ 1018) — the number of sections of the wall, the maximum distance to other section archers can still shoot and the number of archers yet to be distributed along the wall. The second line contains n integers a1, a2, ..., a**n (0 ≤ a**i ≤ 109) — the current number of archers at each section.
Output
Print one integer — the maximum possible value of defense plan reliability, i.e. the maximum possible value of minimum defense level if we distribute k additional archers optimally.
Examples
input
Copy
5 0 65 4 3 4 9
output
Copy
5
input
Copy
4 2 01 2 3 4
output
Copy
6
input
Copy
5 1 12 1 2 1 2
output
Copy
3
https://codeforces.com/contest/954/problem/G
题意:
给你n个位置,每一个位置现在有a[i]个士兵驻守,,a[i]的士兵可以守护\([i-r,i+r]\),r是给定的数值。
现在可以添加k个士兵,问你在最优分配的情况下,每一个位置\(i\)最小有多少个士兵守护?
思路:
最优分配情况的最小值,显然是可以二分答案。
那么我们可以怎么check呢?
假设当前二分到了mid
我们对于每一个位置\(i\)可以获得当前num个士兵守护,如果num>=mid,继续i+1位置,
如果num<mid,即需要用一些补充的士兵来增加该位置的驻守。
最优分配策略是贪心的在\(a[i+r]\)位置加\(mid-num\)个士兵。
这样就涉及到了动态操作问题:
单点修改,区间查询。
如果用树状数组或者线段树来解决,会TLE(亲测),因为会多个log。
那么我们可以用一个双指针进行滑动数组的方式来解决该问题。
这样check的部分时间复杂度就是\(O(n)\)
外部的二分部分时间复杂度是\(O(log_2R)\)
R是二分的边界范围,通过数据范围分析可以知道R上限是2e18;
那么整体的时间复杂度\(O(n*log_2R)\)
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll k;
int w;
int n;
ll a[maxn];
ll tree[maxn];
int lowbit(int x)
{
return -x & (x);
}
void add(int x, ll val)
{
while (x <= n)
{
tree[x] += val;
x += lowbit(x);
}
}
ll ask(int x)
{
ll res = 0ll;
while (x)
{
res += tree[x];
x -= lowbit(x);
}
return res;
}
typedef pair<int, ll> pil;
std::vector<pil> v;
bool check(ll mid)
{
ll temp = k;
bool res = 1;
ll num = 0ll;
int l = 1;
int r = 0;
repd(i, 1, n)
{
while (r - i < w)
{
num += a[++r];
}
while (i - l > w)
{
num -= a[l++];
}
if (num < mid)
{
if (temp >= mid - num)
{
temp -= mid - num;
} else
{
res = 0;
break;
}
a[min(i + w, n)] += mid - num;
v.push_back(mp(min(i + w, n), mid - num));
num = mid;
}
}
for (auto &t : v)
{
a[t.fi] += -1ll * t.se;
}
v.clear();
return res;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n >> w >> k;
repd(i, 1, n)
{
cin >> a[i];
// add(i, a[i]);
}
ll l = 0ll;
ll r = 2e18;
ll mid;
ll ans;
while (l <= r)
{
mid = (l + r) >> 1;
if (check(mid))
{
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
cout << ans << endl;
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Educational Codeforces Round 40 G. Castle Defense (二分+滑动数组+greedy)的更多相关文章
- Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...
- Educational Codeforces Round 40千名记
人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...
- Educational Codeforces Round 40 C. Matrix Walk( 思维)
Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...
- Educational Codeforces Round 40 A B C D E G
A. Diagonal Walking 题意 将一个序列中所有的\('RU'\)或者\('UR'\)替换成\('D'\),问最终得到的序列最短长度为多少. 思路 贪心 Code #include &l ...
- Educational Codeforces Round 40 (Rated for Div. 2) Solution
从这里开始 小结 题目列表 Problem A Diagonal Walking Problem B String Typing Problem C Matrix Walk Problem D Fig ...
- Educational Codeforces Round 40 (Rated for Div. 2) 954G G. Castle Defense
题 OvO http://codeforces.com/contest/954/problem/G 解 二分答案, 对于每个二分的答案值 ANS,判断这个答案是否可行. 记 s 数组为题目中描述的 a ...
- Educational Codeforces Round 37 G. List Of Integers (二分,容斥定律,数论)
G. List Of Integers time limit per test 5 seconds memory limit per test 256 megabytes input standard ...
- Educational Codeforces Round 21 D.Array Division(二分)
D. Array Division time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...
- Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process 题目连接: http://www.codeforces.com/contest/660/problem/C Description You are given an a ...
随机推荐
- [Python[PyQt]] ModuleNotFoundError: No module named 'PyQt5.QtWebEngineWidgets'
解决办法: pip install PyQtWebEngine
- OPC API 简介
————————————————版权声明:本文为CSDN博主「lgbisha」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog. ...
- elasticsearch查询操作
#查看节点信息 curl -X GET http://localhost:9200/_nodes #打开文件数信息 curl -X GET http://localhost:9200/_nodes/s ...
- C++——文件的读写
C++中标准IO库的fstream头文件定义了三种支持文件IO的类型: ifstream,由istream派生而来,提供读文件的功能. ofstream,由ostream派生而来,提供写文件的功能. ...
- @ControllerAdvice和@ExceptionHandler
1. 使用 @ControllerAdvice和@ExceptionHandler处理全局异常 1. 新建异常信息实体类 非必要的类,主要用于包装异常信息. package com.test.exce ...
- SQLite进阶-14.子查询
目录 子查询 SELECT语句中的子查询 INSERT语句中的子查询 UPDATE语句中的子查询 DELETE语句中的子查询 子查询 子查询或内部查询或嵌套查询是在另一个SQLite查询内嵌入在WHE ...
- java基础知识入门
一.java简介及原理图 Java的前世今生 Java之父詹姆斯·高斯林: 1967年, 12岁用报废的电话机和电视做了一台电子游戏机; 1983年, 获得卡内基梅隆大学计算机科学博士学位; 1983 ...
- springboot中配置文件使用2
本文章接上一篇文章:https://www.cnblogs.com/ysq0908/p/11140931.html 1.使用注解@Value获取配置文件的值 注意:上述中的复杂数据封装指:有map等数 ...
- 2.4容错保护:Hystrix
在ribbon使用断路器 改造serice-ribbon 工程的代码,首先在pox.xml文件中加入spring-cloud-starter-hystrix的起步依赖: 引入 <dependen ...
- (十二)springMvc 处理图片,视频等文件的上传
文章目录 导包 修改表单类型 配置解析器 处理上传的图片 补充一个自己写的工具类 导包 需要导入如下的包 commons-fileupload-1.3.3.jar commons-io-2.6.jar ...