Educational Codeforces Round 40 G. Castle Defense (二分+滑动数组+greedy)
G. Castle Defense
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Today you are going to lead a group of elven archers to defend the castle that is attacked by an army of angry orcs. Three sides of the castle are protected by impassable mountains and the remaining side is occupied by a long wall that is split into n sections. At this moment there are exactly a**i archers located at the i-th section of this wall. You know that archer who stands at section i can shoot orcs that attack section located at distance not exceeding r, that is all such sections j that |i - j| ≤ r. In particular, r = 0 means that archers are only capable of shooting at orcs who attack section i.
Denote as defense level of section i the total number of archers who can shoot at the orcs attacking this section. Reliability of the defense plan is the minimum value of defense level of individual wall section.
There is a little time left till the attack so you can't redistribute archers that are already located at the wall. However, there is a reserve of k archers that you can distribute among wall sections in arbitrary way. You would like to achieve maximum possible reliability of the defence plan.
Input
The first line of the input contains three integers n, r and k (1 ≤ n ≤ 500 000, 0 ≤ r ≤ n, 0 ≤ k ≤ 1018) — the number of sections of the wall, the maximum distance to other section archers can still shoot and the number of archers yet to be distributed along the wall. The second line contains n integers a1, a2, ..., a**n (0 ≤ a**i ≤ 109) — the current number of archers at each section.
Output
Print one integer — the maximum possible value of defense plan reliability, i.e. the maximum possible value of minimum defense level if we distribute k additional archers optimally.
Examples
input
Copy
5 0 65 4 3 4 9
output
Copy
5
input
Copy
4 2 01 2 3 4
output
Copy
6
input
Copy
5 1 12 1 2 1 2
output
Copy
3
https://codeforces.com/contest/954/problem/G
题意:
给你n个位置,每一个位置现在有a[i]个士兵驻守,,a[i]的士兵可以守护\([i-r,i+r]\),r是给定的数值。
现在可以添加k个士兵,问你在最优分配的情况下,每一个位置\(i\)最小有多少个士兵守护?
思路:
最优分配情况的最小值,显然是可以二分答案。
那么我们可以怎么check呢?
假设当前二分到了mid
我们对于每一个位置\(i\)可以获得当前num个士兵守护,如果num>=mid,继续i+1位置,
如果num<mid,即需要用一些补充的士兵来增加该位置的驻守。
最优分配策略是贪心的在\(a[i+r]\)位置加\(mid-num\)个士兵。
这样就涉及到了动态操作问题:
单点修改,区间查询。
如果用树状数组或者线段树来解决,会TLE(亲测),因为会多个log。
那么我们可以用一个双指针进行滑动数组的方式来解决该问题。
这样check的部分时间复杂度就是\(O(n)\)
外部的二分部分时间复杂度是\(O(log_2R)\)
R是二分的边界范围,通过数据范围分析可以知道R上限是2e18;
那么整体的时间复杂度\(O(n*log_2R)\)
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll k;
int w;
int n;
ll a[maxn];
ll tree[maxn];
int lowbit(int x)
{
return -x & (x);
}
void add(int x, ll val)
{
while (x <= n)
{
tree[x] += val;
x += lowbit(x);
}
}
ll ask(int x)
{
ll res = 0ll;
while (x)
{
res += tree[x];
x -= lowbit(x);
}
return res;
}
typedef pair<int, ll> pil;
std::vector<pil> v;
bool check(ll mid)
{
ll temp = k;
bool res = 1;
ll num = 0ll;
int l = 1;
int r = 0;
repd(i, 1, n)
{
while (r - i < w)
{
num += a[++r];
}
while (i - l > w)
{
num -= a[l++];
}
if (num < mid)
{
if (temp >= mid - num)
{
temp -= mid - num;
} else
{
res = 0;
break;
}
a[min(i + w, n)] += mid - num;
v.push_back(mp(min(i + w, n), mid - num));
num = mid;
}
}
for (auto &t : v)
{
a[t.fi] += -1ll * t.se;
}
v.clear();
return res;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n >> w >> k;
repd(i, 1, n)
{
cin >> a[i];
// add(i, a[i]);
}
ll l = 0ll;
ll r = 2e18;
ll mid;
ll ans;
while (l <= r)
{
mid = (l + r) >> 1;
if (check(mid))
{
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
cout << ans << endl;
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Educational Codeforces Round 40 G. Castle Defense (二分+滑动数组+greedy)的更多相关文章
- Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...
- Educational Codeforces Round 40千名记
人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...
- Educational Codeforces Round 40 C. Matrix Walk( 思维)
Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...
- Educational Codeforces Round 40 A B C D E G
A. Diagonal Walking 题意 将一个序列中所有的\('RU'\)或者\('UR'\)替换成\('D'\),问最终得到的序列最短长度为多少. 思路 贪心 Code #include &l ...
- Educational Codeforces Round 40 (Rated for Div. 2) Solution
从这里开始 小结 题目列表 Problem A Diagonal Walking Problem B String Typing Problem C Matrix Walk Problem D Fig ...
- Educational Codeforces Round 40 (Rated for Div. 2) 954G G. Castle Defense
题 OvO http://codeforces.com/contest/954/problem/G 解 二分答案, 对于每个二分的答案值 ANS,判断这个答案是否可行. 记 s 数组为题目中描述的 a ...
- Educational Codeforces Round 37 G. List Of Integers (二分,容斥定律,数论)
G. List Of Integers time limit per test 5 seconds memory limit per test 256 megabytes input standard ...
- Educational Codeforces Round 21 D.Array Division(二分)
D. Array Division time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...
- Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process 题目连接: http://www.codeforces.com/contest/660/problem/C Description You are given an a ...
随机推荐
- HelloCube:IJobForEach
此示例演示了基于作业的ECS系统,该系统可旋转一对立方体. 它显示了什么? 此示例基于ForEach示例构建,并说明如何在多线程作业中执行相同的工作,而不是在主线程上执行相同的工作. 与前面的示例一样 ...
- 【文章存档】Local Git 如何部署分支
又来存档文章了,链接 https://docs.azure.cn/zh-cn/articles/azure-operations-guide/app-service-web/aog-app-servi ...
- shell脚本中set -e作用
最近学习shell脚本想到一个问题,如果脚本中出现了一条异常语句,甚至可以影响整个脚本的使用,那么是否有一旦出现问题就可以及时停止的方法呢?在shell脚本中set命令就可以轻松实现.set命令的-e ...
- Had I not seen the Sun(如果我不曾见过太阳)
Had I not seen the Sun by Emily Dickinson Had I not seen the Sun I could have borne the shade But Li ...
- 【计算机】DMA原理2
DMA (直接存储器访问) DMA(Direct Memory Access,直接内存存取) 是所有现代电脑的重要特色,它允许不同速度的硬件装置来沟通,而不需要依赖于 CPU 的大量中断负载.否则,C ...
- 记录一次SignalR服务端实现过程
前言:最近手上一个项目需要后端实时推送数据到前端,第一个想到的就是微软的SignalR,由于之前都是平时没事写的Demo,没有用到实际项目中,这次恰好用到了,因此记录下来整个实现过程(网上也有很多类似 ...
- StormUI各参数详解
参考:http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
- 究竟什么是Java异常?
第四阶段 IO 异常处理 没有完美的程序,所以我们需要不断地完善,考虑各种可能性,我们要将除了自己以外的任何用户或者操作者都当成傻子来考虑问题 在我们开发过程中 我们运行时常常会遇到 这样java.l ...
- 搭建Leanote笔记
mongo\leanote #查询Linux开放的端口 netstat -nupl (UDP类型的端口) netstat -ntpl (TCP类型的端口) #下载安装MongoDB wget http ...
- Photon Server 实现注册与登录(四) --- 服务端响应登陆和注册
前面已经整理过了服务端代码,MyGameServer.cs 和 ClientPeer.cs 对请求和响应进行了拆分.接下来处理对前端的响应 一.响应登陆请求 之前整理中,响应前端请求主要在类Clien ...