Educational Codeforces Round 40 G. Castle Defense (二分+滑动数组+greedy)
G. Castle Defense
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Today you are going to lead a group of elven archers to defend the castle that is attacked by an army of angry orcs. Three sides of the castle are protected by impassable mountains and the remaining side is occupied by a long wall that is split into n sections. At this moment there are exactly a**i archers located at the i-th section of this wall. You know that archer who stands at section i can shoot orcs that attack section located at distance not exceeding r, that is all such sections j that |i - j| ≤ r. In particular, r = 0 means that archers are only capable of shooting at orcs who attack section i.
Denote as defense level of section i the total number of archers who can shoot at the orcs attacking this section. Reliability of the defense plan is the minimum value of defense level of individual wall section.
There is a little time left till the attack so you can't redistribute archers that are already located at the wall. However, there is a reserve of k archers that you can distribute among wall sections in arbitrary way. You would like to achieve maximum possible reliability of the defence plan.
Input
The first line of the input contains three integers n, r and k (1 ≤ n ≤ 500 000, 0 ≤ r ≤ n, 0 ≤ k ≤ 1018) — the number of sections of the wall, the maximum distance to other section archers can still shoot and the number of archers yet to be distributed along the wall. The second line contains n integers a1, a2, ..., a**n (0 ≤ a**i ≤ 109) — the current number of archers at each section.
Output
Print one integer — the maximum possible value of defense plan reliability, i.e. the maximum possible value of minimum defense level if we distribute k additional archers optimally.
Examples
input
Copy
5 0 65 4 3 4 9
output
Copy
5
input
Copy
4 2 01 2 3 4
output
Copy
6
input
Copy
5 1 12 1 2 1 2
output
Copy
3
https://codeforces.com/contest/954/problem/G
题意:
给你n个位置,每一个位置现在有a[i]个士兵驻守,,a[i]的士兵可以守护\([i-r,i+r]\),r是给定的数值。
现在可以添加k个士兵,问你在最优分配的情况下,每一个位置\(i\)最小有多少个士兵守护?
思路:
最优分配情况的最小值,显然是可以二分答案。
那么我们可以怎么check呢?
假设当前二分到了mid
我们对于每一个位置\(i\)可以获得当前num个士兵守护,如果num>=mid,继续i+1位置,
如果num<mid,即需要用一些补充的士兵来增加该位置的驻守。
最优分配策略是贪心的在\(a[i+r]\)位置加\(mid-num\)个士兵。
这样就涉及到了动态操作问题:
单点修改,区间查询。
如果用树状数组或者线段树来解决,会TLE(亲测),因为会多个log。
那么我们可以用一个双指针进行滑动数组的方式来解决该问题。
这样check的部分时间复杂度就是\(O(n)\)
外部的二分部分时间复杂度是\(O(log_2R)\)
R是二分的边界范围,通过数据范围分析可以知道R上限是2e18;
那么整体的时间复杂度\(O(n*log_2R)\)
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll k;
int w;
int n;
ll a[maxn];
ll tree[maxn];
int lowbit(int x)
{
return -x & (x);
}
void add(int x, ll val)
{
while (x <= n)
{
tree[x] += val;
x += lowbit(x);
}
}
ll ask(int x)
{
ll res = 0ll;
while (x)
{
res += tree[x];
x -= lowbit(x);
}
return res;
}
typedef pair<int, ll> pil;
std::vector<pil> v;
bool check(ll mid)
{
ll temp = k;
bool res = 1;
ll num = 0ll;
int l = 1;
int r = 0;
repd(i, 1, n)
{
while (r - i < w)
{
num += a[++r];
}
while (i - l > w)
{
num -= a[l++];
}
if (num < mid)
{
if (temp >= mid - num)
{
temp -= mid - num;
} else
{
res = 0;
break;
}
a[min(i + w, n)] += mid - num;
v.push_back(mp(min(i + w, n), mid - num));
num = mid;
}
}
for (auto &t : v)
{
a[t.fi] += -1ll * t.se;
}
v.clear();
return res;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n >> w >> k;
repd(i, 1, n)
{
cin >> a[i];
// add(i, a[i]);
}
ll l = 0ll;
ll r = 2e18;
ll mid;
ll ans;
while (l <= r)
{
mid = (l + r) >> 1;
if (check(mid))
{
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
cout << ans << endl;
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Educational Codeforces Round 40 G. Castle Defense (二分+滑动数组+greedy)的更多相关文章
- Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...
- Educational Codeforces Round 40千名记
人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...
- Educational Codeforces Round 40 C. Matrix Walk( 思维)
Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...
- Educational Codeforces Round 40 A B C D E G
A. Diagonal Walking 题意 将一个序列中所有的\('RU'\)或者\('UR'\)替换成\('D'\),问最终得到的序列最短长度为多少. 思路 贪心 Code #include &l ...
- Educational Codeforces Round 40 (Rated for Div. 2) Solution
从这里开始 小结 题目列表 Problem A Diagonal Walking Problem B String Typing Problem C Matrix Walk Problem D Fig ...
- Educational Codeforces Round 40 (Rated for Div. 2) 954G G. Castle Defense
题 OvO http://codeforces.com/contest/954/problem/G 解 二分答案, 对于每个二分的答案值 ANS,判断这个答案是否可行. 记 s 数组为题目中描述的 a ...
- Educational Codeforces Round 37 G. List Of Integers (二分,容斥定律,数论)
G. List Of Integers time limit per test 5 seconds memory limit per test 256 megabytes input standard ...
- Educational Codeforces Round 21 D.Array Division(二分)
D. Array Division time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...
- Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process 题目连接: http://www.codeforces.com/contest/660/problem/C Description You are given an a ...
随机推荐
- ES 数据类型
官网数据类型网址 有价值的参考博客 本文 Elasticsearch 版本为 7.2 1. 核心数据类型 (1)字符串类型: text, keyword (2)数字类型:long, integer, ...
- 使用Dreamweaver制作简单网站(二)
继续上周没完成的 一.新建iframe.css 1.点击文件-选择新建-css 2.ctrl+s保存为iframe.css 在style文件夹下. 3.回到main.html 右键选择-附加样式表,选 ...
- C++零散知识笔记本
目录 1.符号 1.1符号输出 1.2运算符 2.基本内置类型 wchar_t 3.内置类型所占字节数 内置类型的简写 4.变量的本质 变量与指针的故事 (1)malloc函数 (2)new关键字 5 ...
- [百度]将ftp添加到本地映射磁盘的方法
在桌面上鼠标双击“计算机”,进入“计算机”窗口 2 在“计算机”窗口中,选择“映射网络驱动器” 3 进入“映射网络驱动器”窗口 4 设置盘符,可以使用默认,也可以自己手动设置 5 在“映射网络驱动器” ...
- postgres csv日志和查看用户权限
最近在使用postgres 时遇到的2个问题,顺便记录一下查到的比较好的资料. 怀疑postgres在执行SQL时报错,程序日志中有无明确异常信息.通过查看csv日志来确定是否SQL真的是执行时报错. ...
- hanlp自然语言处理包的人名识别代码解析
HanLP发射矩阵词典nr.txt中收录单字姓氏393个.袁义达在<中国的三大姓氏是如何统计出来的>文献中指出:当代中国100个常见姓氏中,集中了全国人口的87%,根据这一数据我们只保留n ...
- mysql 连接远程连接服务器 1130错误
今天在用sqlyog连接非本地的Mysql服务器的数据库,居然无法连接很奇怪,报1130错误, ERROR 1130: Host 192.168.3.100 is not allowed to con ...
- Eclipse MyEclipse 反编译.class文件 myeclipse source not found
首先,需要下载两个必须的插件包. 一个是:准备反编译需要的jad.exe 下载地址:http://varaneckas.com/jad/ 二个是:反编译编辑器net.sf.jadclipse_3.3. ...
- git 操作实践
git操作: - git是一个用于帮助用户实现版本控制的软件 #首先创建项目 1. cd到项目文件目录 2. 鼠标右键点击 Git Bash Here 3. git init #在项目文件目录生成 . ...
- python之random库的使用以及程序的异常处理
1.random库的使用: random库是使用随机数的Python标准库从概率论角度来说,随机数是随机产生的数据(比如抛硬币),但时计算机是不可能产生随机值,真正的随机数也是在特定条件下产生的确定值 ...