G. Castle Defense

time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Today you are going to lead a group of elven archers to defend the castle that is attacked by an army of angry orcs. Three sides of the castle are protected by impassable mountains and the remaining side is occupied by a long wall that is split into n sections. At this moment there are exactly a**i archers located at the i-th section of this wall. You know that archer who stands at section i can shoot orcs that attack section located at distance not exceeding r, that is all such sections j that |i - j| ≤ r. In particular, r = 0 means that archers are only capable of shooting at orcs who attack section i.

Denote as defense level of section i the total number of archers who can shoot at the orcs attacking this section. Reliability of the defense plan is the minimum value of defense level of individual wall section.

There is a little time left till the attack so you can't redistribute archers that are already located at the wall. However, there is a reserve of k archers that you can distribute among wall sections in arbitrary way. You would like to achieve maximum possible reliability of the defence plan.

Input

The first line of the input contains three integers n, r and k (1 ≤ n ≤ 500 000, 0 ≤ r ≤ n, 0 ≤ k ≤ 1018) — the number of sections of the wall, the maximum distance to other section archers can still shoot and the number of archers yet to be distributed along the wall. The second line contains n integers a1, a2, ..., a**n (0 ≤ a**i ≤ 109) — the current number of archers at each section.

Output

Print one integer — the maximum possible value of defense plan reliability, i.e. the maximum possible value of minimum defense level if we distribute k additional archers optimally.

Examples

input

Copy

5 0 65 4 3 4 9

output

Copy

5

input

Copy

4 2 01 2 3 4

output

Copy

6

input

Copy

5 1 12 1 2 1 2

output

Copy

3

https://codeforces.com/contest/954/problem/G

题意:

给你n个位置,每一个位置现在有a[i]个士兵驻守,,a[i]的士兵可以守护\([i-r,i+r]\),r是给定的数值。

现在可以添加k个士兵,问你在最优分配的情况下,每一个位置\(i\)最小有多少个士兵守护?

思路:

最优分配情况的最小值,显然是可以二分答案。

那么我们可以怎么check呢?

假设当前二分到了mid

我们对于每一个位置\(i\)可以获得当前num个士兵守护,如果num>=mid,继续i+1位置,

如果num<mid,即需要用一些补充的士兵来增加该位置的驻守。

最优分配策略是贪心的在\(a[i+r]\)位置加\(mid-num\)个士兵。

这样就涉及到了动态操作问题:

单点修改,区间查询。

如果用树状数组或者线段树来解决,会TLE(亲测),因为会多个log。

那么我们可以用一个双指针进行滑动数组的方式来解决该问题。

这样check的部分时间复杂度就是\(O(n)\)

外部的二分部分时间复杂度是\(O(log_2R)\)

R是二分的边界范围,通过数据范围分析可以知道R上限是2e18;

那么整体的时间复杂度\(O(n*log_2R)\)

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll k;
int w;
int n;
ll a[maxn];
ll tree[maxn];
int lowbit(int x)
{
return -x & (x);
}
void add(int x, ll val)
{
while (x <= n)
{
tree[x] += val;
x += lowbit(x);
}
}
ll ask(int x)
{
ll res = 0ll;
while (x)
{
res += tree[x];
x -= lowbit(x);
}
return res;
}
typedef pair<int, ll> pil;
std::vector<pil> v;
bool check(ll mid)
{
ll temp = k;
bool res = 1;
ll num = 0ll;
int l = 1;
int r = 0;
repd(i, 1, n)
{
while (r - i < w)
{
num += a[++r];
}
while (i - l > w)
{
num -= a[l++];
}
if (num < mid)
{
if (temp >= mid - num)
{
temp -= mid - num;
} else
{
res = 0;
break;
}
a[min(i + w, n)] += mid - num;
v.push_back(mp(min(i + w, n), mid - num));
num = mid;
}
}
for (auto &t : v)
{
a[t.fi] += -1ll * t.se;
}
v.clear();
return res; }
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n >> w >> k;
repd(i, 1, n)
{
cin >> a[i];
// add(i, a[i]);
}
ll l = 0ll;
ll r = 2e18;
ll mid;
ll ans;
while (l <= r)
{
mid = (l + r) >> 1;
if (check(mid))
{
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
cout << ans << endl;
return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Educational Codeforces Round 40 G. Castle Defense (二分+滑动数组+greedy)的更多相关文章

  1. Educational Codeforces Round 40 F. Runner's Problem

    Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...

  2. Educational Codeforces Round 40千名记

    人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...

  3. Educational Codeforces Round 40 C. Matrix Walk( 思维)

    Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...

  4. Educational Codeforces Round 40 A B C D E G

    A. Diagonal Walking 题意 将一个序列中所有的\('RU'\)或者\('UR'\)替换成\('D'\),问最终得到的序列最短长度为多少. 思路 贪心 Code #include &l ...

  5. Educational Codeforces Round 40 (Rated for Div. 2) Solution

    从这里开始 小结 题目列表 Problem A Diagonal Walking Problem B String Typing Problem C Matrix Walk Problem D Fig ...

  6. Educational Codeforces Round 40 (Rated for Div. 2) 954G G. Castle Defense

    题 OvO http://codeforces.com/contest/954/problem/G 解 二分答案, 对于每个二分的答案值 ANS,判断这个答案是否可行. 记 s 数组为题目中描述的 a ...

  7. Educational Codeforces Round 37 G. List Of Integers (二分,容斥定律,数论)

    G. List Of Integers time limit per test 5 seconds memory limit per test 256 megabytes input standard ...

  8. Educational Codeforces Round 21 D.Array Division(二分)

    D. Array Division time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  9. Educational Codeforces Round 11 C. Hard Process 二分

    C. Hard Process 题目连接: http://www.codeforces.com/contest/660/problem/C Description You are given an a ...

随机推荐

  1. 神经网络手写数字识别numpy实现

    本文摘自Michael Nielsen的Neural Network and Deep Learning,该书的github网址为:https://github.com/mnielsen/neural ...

  2. Jetson TX2 不同的工作模式

    Jetson TX2 有五种工作模式,下面介绍这几种工作模式下电压.频率以及如何启动. 原理图 几种不同的工作模式 mode mode name Denver Frequency ARM Freque ...

  3. 【miscellaneous】软件加密方法

    原文:http://www.jiamisoft.com/blog/3471-ruanjianjiamifangfa.html 软件行业的加密是软件厂商为了保护软件开发的利润而采取的一种软件保护方式.当 ...

  4. ie兼容promise

    引入 <script src = "https://cdn.polyfill.io/v2/polyfill.min.js"></script> 或 < ...

  5. Odoo13 新功能:委外

    [ADD] mrp_subcontracting In a few words, it allows to send components to a subcontractor partner and ...

  6. 冲刺Noip2017模拟赛7 解题报告——五十岚芒果酱

    1.二叉树(binary) .二叉树 (binary.cpp/c/pas) [问题描述] 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: ()若左子树不空,则左子树上所有结点的值均小于它的根结 ...

  7. System memory 259522560 must be at least 4.718592

    [学习笔记] /*没有下面的话, 会报一个错误,java.lang.IllegalArgumentException: System memory 259522560 must be at least ...

  8. 【AtCoder】ARC067

    ARC067 C - Factors of Factorial 这个直接套公式就是,先求出来每个质因数的指数幂,然后约数个数就是 \((1 + e_{1})(1 + e_{2})(1 + e_{3}) ...

  9. SpringBoot导入mail依赖报错

    报错:Missing artifact org.springframework.boot:spring-boot-starter-mail:jar:2.0.3 之前导入log4j时报的一样的错误,最后 ...

  10. Snoopy.class.php介绍

    Snoopy是一个开源的模拟抓取工具,找到一个不错的介绍网页 记录一下: php开源采集类Snoopy.class.php功能使用介绍与下载地址 Snoopy.class.php使用手册 还有一个介绍 ...