BZOJ_2440_[中山市选2011]完全平方数_容斥原理

题意:

求第k个不是完全平方数倍数的数

分析:

二分答案,转化成1~x中不是完全平方数倍数的数的个数

答案=所有数-1个质数的平方的倍数+2个质数乘积的平方的倍数

=x-x/2^2-x/3^2+x/4^2-x/5^2+x/6^2

发现容斥的系数就是μ

线性筛即可

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <bitset>
using namespace std;
#define LL long long
int T,n;
bitset<100010>vis;
LL ans;
int prime[100010],miu[100010],cnt;
void init(){
int i,j;
miu[1]=1;
for(i=2;i<=100000;i++){
if(!vis[i]){
prime[++cnt]=i;
miu[i]=-1;
}
for(j=1;j<=cnt&&i*prime[j]<=100000;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
miu[i*prime[j]]=0;break;
}
miu[i*prime[j]]=-miu[i];
}
}
}
LL check(LL x){
LL i;
LL re=0;
for(i=1ll;i*i<=x;i++){
re+=miu[i]*x/(i*i);
}
return re;
}
int main(){
scanf("%d",&T);
init();
while(T--){
scanf("%d",&n);
LL l=0,r=1ll<<33;
while(l<r){
LL mid=l+r>>1ll;
if(check(mid)>=n)r=mid;
else l=mid+1;
}
printf("%lld\n",l);
}
}

BZOJ_2440_[中山市选2011]完全平方数_容斥原理+线性筛的更多相关文章

  1. BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4920  Solved: 2389[Submit][Sta ...

  2. BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)

    如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...

  3. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  4. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  5. 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...

  6. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  7. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  8. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  9. 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)

    传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...

随机推荐

  1. mysql6.5 操作日志

    创建用户并授权 grant all privileges on database.* to user@localhost identified by '123456'; flush privilege ...

  2. MySQL 库名重命名

    MySQL ( RENAME database olddbname TO newdbname )  对库名的重命名上会出现一些奇怪的错误.有丢失数据的风险. 所以如何去重命名呢: 1 用mysqldu ...

  3. DataReport使用手记

    06年的一篇blog,转过来: 前几天,帮同事改一个VB的课业程序,具体任务就是在程序中添加报表功能,由于考虑到部署环境的问题,所以没有采用我以前惯用的Excel实现,而采用了同事提出的VB自带的Da ...

  4. React+ANTD项目使用后的一些关于生命周期比较实用的心得

    1. constructor() constructor(props){ super(props) this.state=({ }) } 一定先写super  可以接收从父组件传来的值 父组件往子组件 ...

  5. jQuery匿名函数$(function(){ }

    搬运原地址:https://zhidao.baidu.com/question/473318430.html $(function(){ }实际上是匿名函数.这是JQuery的语法,$表示JQuery ...

  6. Java注解处理器--编译时处理的注解

    1. 一些基本概念 在开始之前,我们需要声明一件重要的事情是:我们不是在讨论在运行时通过反射机制运行处理的注解,而是在讨论在编译时处理的注解.注解处理器是 javac 自带的一个工具,用来在编译时期扫 ...

  7. JDK安装:CentOS和Windows环境

    Windows上JDK安装             1:下载jdk.  地址在  http://www.oracle.com/index.html  >downloads>se>Ja ...

  8. mysql-索引、关系、范式

    索引 几乎所有的索引都是建立在字段之上 索引:系统根据某种算法,将已有的数据(未来可能新增的数据也算),单独建立一个文件,这个文件能够快速的匹配数据,并且能够快速的找到对应的表中的记录 索引意义 能够 ...

  9. Python 3 利用 Dlib 19.7 实现摄像头人脸识别

    0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地: 根据抠取的 ...

  10. Django入门一之安装及项目创建

    1. 习惯性的创建虚拟环境 # 由于我安装也安装了pyhton3所以在前面要加python2 -m F:\Python Script\MyVirtualenv>python2 -m virtua ...