bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description

Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
-1 0
1 0
0 0
Sample Output
题解
算法比较直观,先按斜率排序,再将最小的两条线入栈,然后依次处理每条线,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈 ;这样为什么对呢?因为对如任意一个开口向上的半凸包,从左到右依次观察每条边和每个顶点,发现其斜率不断增大,顶点的横坐标也不断增大。
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#define eps 0.0000001
using namespace std; int top,n;
bool boo[];
struct Node
{
double x,y;
int num;
}a[],stack[]; double rope(Node x,Node y)
{
return (y.y-x.y)/(x.x-y.x);
}
bool cmp(Node x,Node y)
{
if (fabs(x.x-y.x)<eps) return x.y<y.y;
else return x.x<y.x;
}
void solve()
{
for (int i=;i<=n;i++)
{
while(top)
{
if (fabs(stack[top].x-a[i].x)<=eps) top--;//后者b大
else if (top>&&rope(a[i],stack[top-])<=rope(stack[top],stack[top-])) top--;
else break;
}
stack[++top]=a[i];
}
for (int i=;i<=top;i++)
boo[stack[i].num]=;
for (int i=;i<=n;i++)
if (boo[i]) printf("%d ",i);
}
int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
a[i].num=i;
}
sort(a+,a+n+,cmp);
solve();
}
bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com的更多相关文章
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- B1007 [HNOI2008]水平可见直线 几何
其实就是一道很简单的栈,只要明白什么情况会被挡住就行了.假如斜率一样则下面的被挡住,假如不一样就算交点,看那个交点在上面就行了. 题干: Description 在xoy直角坐标平面上有n条直线L1, ...
随机推荐
- Hibernate配置详解
<!--标准的XML文件的起始行,version='1.0'表明XML的版本,encoding='gb2312'表明XML文件的编码方式--> <?xml version='1.0' ...
- [SPOJ1811]Longest Common Substring 后缀自动机 最长公共子串
题目链接:http://www.spoj.com/problems/LCS/ 题意如题目,求两个串的最大公共子串LCS. 首先对其中一个字符串A建立SAM,然后用另一个字符串B在上面跑. 用一个变量L ...
- Jboss服务器使用
一.作者前言 早上坐地铁的时候,阅览about JAVA.了解到一个程序猿,对于服务器的使用,最起码的熟悉那么几种,例如tomcat,jboss,weblogic,websphere,还有Nginx. ...
- 让px单位自动转换为rem的方法
开发工具: 编辑器:vscode; css预处理器:less;(无具体要求): 步骤: 1. vscode安装cssrem插件: 2. 修改css插件的默认配置,其默认转换p ...
- Microsoft SQL Server学习(二)
目录 关于数据库的语法: 1.创建数据库 create database 数据库名 on primary (主文件属性(name,filename,size等)) -用逗号隔开次要主要文件和次要文件 ...
- xamarin 学习笔记02- IOS Simulator for windows 安装
微软发布了在window下的ios模拟器 下载 ios模拟器 并安装在windows系统上. Xamarin for Visual Studio 和 网络上的 Mac 中的 Xamarin.iOS 开 ...
- Android(java)学习笔记200:JNI之NDK的概念
1.交叉编译 (1)概念 在一个平台(硬件)和os(软件)环境下,编译出另一种平台和os下可以运行的二进制代码. e.g: 电脑端 ...
- js 删除数组中某一项的几种方法总结
第一种:改变原数组 借用原生数组方法:splice(index,len,[item]) 剪接 借用原生对象方法:delete array[index] + array.slice(0, index) ...
- webgl推荐书籍
网址:https://www.douban.com/doulist/45940373/ webgl 来自: Pasu2017-04-17创建 2017-07-25更新 推荐 关注 2 人关注 ...
- CAD使用GetxDataLong读数据(com接口)
主要用到函数说明: MxDrawEntity::GetxDataLong2 读取一个Long扩展数据,详细说明如下: 参数 说明 [in] LONG lItem 该值所在位置 [out, retval ...