Description

Input

第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

题解

算法比较直观,先按斜率排序,再将最小的两条线入栈,然后依次处理每条线,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈 ;这样为什么对呢?因为对如任意一个开口向上的半凸包,从左到右依次观察每条边和每个顶点,发现其斜率不断增大,顶点的横坐标也不断增大。

 #include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#define eps 0.0000001
using namespace std; int top,n;
bool boo[];
struct Node
{
double x,y;
int num;
}a[],stack[]; double rope(Node x,Node y)
{
return (y.y-x.y)/(x.x-y.x);
}
bool cmp(Node x,Node y)
{
if (fabs(x.x-y.x)<eps) return x.y<y.y;
else return x.x<y.x;
}
void solve()
{
for (int i=;i<=n;i++)
{
while(top)
{
if (fabs(stack[top].x-a[i].x)<=eps) top--;//后者b大
else if (top>&&rope(a[i],stack[top-])<=rope(stack[top],stack[top-])) top--;
else break;
}
stack[++top]=a[i];
}
for (int i=;i<=top;i++)
boo[stack[i].num]=;
for (int i=;i<=n;i++)
if (boo[i]) printf("%d ",i);
}
int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
a[i].num=i;
}
sort(a+,a+n+,cmp);
solve();
}

bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com的更多相关文章

  1. [bzoj1007][HNOI2008]水平可见直线_单调栈

    水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...

  2. [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

  3. [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...

  4. BZOJ1007: [HNOI2008]水平可见直线(单调栈)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8638  Solved: 3327[Submit][Status][Discuss] Descripti ...

  5. BZOJ1007:[HNOI2008]水平可见直线(计算几何)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

  6. bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳

    在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...

  7. [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:   ...

  8. bzoj1007 [HNOI2008]水平可见直线——单调栈

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...

  9. B1007 [HNOI2008]水平可见直线 几何

    其实就是一道很简单的栈,只要明白什么情况会被挡住就行了.假如斜率一样则下面的被挡住,假如不一样就算交点,看那个交点在上面就行了. 题干: Description 在xoy直角坐标平面上有n条直线L1, ...

随机推荐

  1. 积分图像 分类: 图像处理 Matlab 2015-06-06 10:30 149人阅读 评论(0) 收藏

    积分图像(integral image)是一种快速计算矩形区域之和的数据结构,常利用它对算法进行加速.积分图像中处的值是原始灰度图像的左上角与当前点所围成的矩形区域内所有像素点的灰度值之和,即: 其中 ...

  2. webapp开发学习---Cordova环境搭建

    Cordova 使用HTML, CSS & JS进行移动App开发;多平台共用一套代码;免费开源 步骤:(来自Cordova官网) 1.安装Cordova(在node.js环境下进行安装) 命 ...

  3. WindowForm.计算器

    设计计算器: 外部变量: 数字键按钮: 运算符按钮事件代码: 清零按钮 等号按钮: 思维导图:

  4. 构建微服务开发环境5————安装Node.js

    [内容指引] 下载Node.js: Mac下安装Node.js: Windows下安装Node.js; 查看node和npm的版本. 一.下载Node.js 访问Node.js官网:https://n ...

  5. (1) Jenkins + Subversion + Maven + TestNG - 软件

    软件需求 1 Jenkins http://jenkins-ci.org/ 2 Visual SVN Server https://www.visualsvn.com/server/ 3 Tortoi ...

  6. SQL Server 零散笔记

    排序显示行号 select Row_Number() over(order by Code) as RowNumber,ID,Code,Name from CBO_ItemMaster 不排序显示行号 ...

  7. rem手机端页面自适应布局(待修正下一篇完美布局)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. struts2 针对类型转换出错的处理

    在类型转换出错时,需要在页面上显示友好提示: 类型转换出错时,会抛出一个运行时异常,程序会根据建立的属性文件,显示相应的错误提示. 实现方法: 1)新建局部属性文件或者全局属性文件 局部属性文件:放置 ...

  9. cookie和session的用法用途,执行流程,区别联系

    1.为什么要有cookie/session?在客户端浏览器向服务器发送请求,服务器做出响应之后,二者便会断开连接(一次会话结束).那么下次用户再来请求服务器,服务器没有任何办法去识别此用户是谁.比如w ...

  10. CAD参数绘制半径标注(网页版)

    主要用到函数说明: _DMxDrawX::DrawDimRadial 绘制一个半径标注.详细说明如下: 参数 说明 DOUBLE dCenterX 被标注的曲线的中点X值 DOUBLE dCenter ...