题目:http://poj.org/problem?id=3539

题目大意是给定 a, b, c,求 1~h 内有多少个数可以被 a, b, c 通过加减法组成;

这是今天刚讲的神奇的——同余类 bfs 问题!

大概就是选定一个模数,就选最小的(常数可能会比较小?),不妨令作 a,构建一系列点,组成 mod a 剩余系;

然后我们要找到每个点的最小可达数,然后它加上若干个 a 就都是可达的;

对于一个点 x,它可以转移到 (x + b) % b,代价是 b ;c 同理;

从起点开始 bfs,对于本题来说就是1%a,且 dis[1%a] = 1(层数),求出 dis[] 数组,就是每个点的最小可达数;

计算答案就是对于每个余数(点),看看在1~h 中有多少个它加若干 a 可达的数,也就是 (h - dis[x]) / a + 1;

不过其实不 bfs 也可以,反正就是求最短路;

注意 dis 是 long long 哟~

代码如下:

dijkstra:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
ll h,ans,dis[maxn];
int a,b,c,hd[maxn],ct;
priority_queue<pair<ll,int> >q;
bool vis[maxn];
struct N{
int to,nxt,w;
N(int t=,int n=,int w=):to(t),nxt(n),w(w) {}
}ed[maxn<<];
void add(int x,int y,int z){ed[++ct]=N(y,hd[x],z); hd[x]=ct;}
void dijkstra()
{
memset(dis,0x3f,sizeof dis);
dis[%a]=; q.push(make_pair(-,%a));
while(q.size())
{
int x=q.top().second; q.pop();
if(vis[x])continue;
vis[x]=;
for(int i=hd[x];i;i=ed[i].nxt)
{
int u=ed[i].to;
if(dis[u]>dis[x]+ed[i].w)
{
dis[u]=dis[x]+ed[i].w;
q.push(make_pair(-dis[u],u));
}
}
}
}
int main()
{
scanf("%lld%d%d%d",&h,&a,&b,&c);
if(a>b)swap(a,b); if(a>c)swap(a,c);
for(int i=;i<a;i++)
{
add(i,(i+b)%a,b);
add(i,(i+c)%a,c);
}
dijkstra();
for(int i=;i<a;i++)
{
if(dis[i]>h)continue;//!
ans+=(ll)(h-dis[i])/a+;
}
printf("%lld\n",ans);
return ;
}

dijkstra

spfa:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
ll h,ans,dis[maxn];
int a,b,c,hd[maxn],ct;
queue<int>q;
bool vis[maxn];
struct N{
int to,nxt,w;
N(int t=,int n=,int w=):to(t),nxt(n),w(w) {}
}ed[maxn<<];
void add(int x,int y,int z){ed[++ct]=N(y,hd[x],z); hd[x]=ct;}
void spfa()
{
memset(dis,0x3f,sizeof dis);
dis[%a]=; q.push(%a); vis[%a]=;
while(q.size())
{
int x=q.front(); q.pop(); vis[x]=;
for(int i=hd[x];i;i=ed[i].nxt)
{
int u=ed[i].to;
if(dis[u]>dis[x]+ed[i].w)
{
dis[u]=dis[x]+ed[i].w;
if(!vis[u])vis[u]=,q.push(u);
}
}
}
}
int main()
{
scanf("%lld%d%d%d",&h,&a,&b,&c);
if(a>b)swap(a,b); if(a>c)swap(a,c);
for(int i=;i<a;i++)
{
add(i,(i+b)%a,b);
add(i,(i+c)%a,c);
}
spfa();
for(int i=;i<a;i++)
{
if(dis[i]>h)continue;//!
ans+=(ll)(h-dis[i])/a+;
}
printf("%lld\n",ans);
return ;
}

spfa

bfs:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
ll h,ans;
ll a,b,c,dis[maxn];//ll
queue<int>q;
bool vis[maxn];
void bfs()
{
memset(dis,0x3f,sizeof dis);
dis[%a]=; q.push(%a); vis[%a]=;
while(q.size())
{
int x=q.front(),u; q.pop(); vis[x]=;
if(dis[u=(x+b)%a]>dis[x]+b)
{
dis[u]=dis[x]+b;
if(!vis[u])/*vis[u]=1,*/q.push(u);
}
if(dis[u=(x+c)%a]>dis[x]+c)
{
dis[u]=dis[x]+c;
if(!vis[u])/*vis[u]=1,*/q.push(u);
}
}
}
int main()
{
scanf("%lld%lld%lld%lld",&h,&a,&b,&c);
if(a>b)swap(a,b); if(a>c)swap(a,c);
bfs();
for(int i=;i<a;i++)
{
if(dis[i]>h)continue;//!
ans+=(h-dis[i])/a+;
}
printf("%lld\n",ans);
return ;
}

poj3539 Elevator——同余类bfs的更多相关文章

  1. [poj 3539] Elevator (同余类bfs)

    Description Edward works as an engineer for Non-trivial Elevators: Engineering, Research and Constru ...

  2. poj 3539 Elevator——同余类bfs

    题目:http://poj.org/problem?id=3539 考虑把层数分为模a剩余系.同类内可通过+若干个a走到. 不同类之间需要通过+b.+c来走到. 需要求出每一类中最小的能走到的.即最短 ...

  3. 同余类BFS的一些瞎吹

    同余类BFS的题,是个OIer基本上都会见过一些,最好的例子就是NOIP 2018 day1  T2---货币系统 虽然这题其实是什么背包就能解决的题目,但数据一变大,出题人坏一点,就没了.... 同 ...

  4. POJ 3539 Elevator(同余类BFS)

    题意 有一部电梯,最初停在1层. 电梯有4个按键,上升a,b,c层,回到一层. 求从一层出发.能到达1~h的哪些楼层. (h<=1018,a,b,c<=105) 题解 这种h能大的图论,一 ...

  5. BZOJ2118: 墨墨的等式(同余类BFS)(数学转为图论题)

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2944  Solved: 1206[Submit][Status][Discu ...

  6. POJ3539 Elevator

    Time Limit: 4000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu Description Edward wor ...

  7. Luogu4156 WC2016 论战捆竹竿 KMP、同余类最短路、背包、单调队列

    传送门 豪华升级版同余类最短路-- 官方题解 主要写几个小trick: \(1.O(nm)\)实现同余类最短路: 设某一条边长度为\(x\),那么我们选择一个点,在同余类上不断跳\(x\),可以形成一 ...

  8. NOIP 2017 小凯的疑惑(同余类)

    题意 给出两个互质的数a,b问最大的不能被xa+yb(x,y>=0)表示的数.(a,b<=109) 题解 NOIPday1T1一道数论题,不知埋葬了多少人的梦想. 用同余类去解释. 我们依 ...

  9. BZOJ2118 墨墨的等式[同余类最短路]

    声明:关于这题的$O(mn)$尚且未深入理解,虽然之前有跟这位神仙聊过做法但并没太懂.. $O(mn\log m)$同余最短路做法: 首先不妨抽出最小的$a_i=m$,那么剩余的$a$如果可以表示出$ ...

随机推荐

  1. 【LeetCode】7、Reverse Integer(整数反转)

    题目等级:Easy 题目描述: Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 O ...

  2. Yii 时间日期组件与composer 下载中出现的问题

    首先本篇主要讲3点 一个Yii时间日期组件的两种用法 笔者使用composer下载该组件时出现问题的解决办法 1.composer下载出现的问题 file could not be downloade ...

  3. Jmeter使用基础笔记-写一个http请求

    前言 本篇文章主要讲述2个部分: 搭建一个简单的测试环境 用Jmeter发送一个简单的http请求 搭建测试环境 编写flask代码(我参考了开源项目HttpRunner的测试服务器),将如下的代码保 ...

  4. Extract local angle of attack on wind turbine blades

    Extract local angle of attack on wind turbine blades Table of Contents 1. Extract local angle of att ...

  5. graph.h

    #ifndef _GRAPH_#define _GRAPH_#include<stdio.h>#include<stdlib.h>#include<string.h> ...

  6. 调试pcb板子的步骤

    在从外边焊回来的板子中查找问题的时候,如果只是简单的 一通乱调,很有可能一下子就调好了,但是大多数的时候是调了半天,不知道接下来该如何进行,因此,严格的按照步骤走,是个不错的想法: 1.拿到板子的第一 ...

  7. 10.3andXE7的DEVExpress18.2.1记录备查

    记录备查: win10 DEVExpress18.2.1用DevExpressVCL一键编译安装工具_v10.3.2 - 2018-12-12.exe(包括help,备份...升级系统不用重新安装控件 ...

  8. vue.js组件之间通讯的数据双向绑定----父亲把数据传递给儿子,儿子更改数据后,重新发送给父亲,父亲数据更改后,属性会重新发送个儿子,儿子刷新新数据

    vue组件是相互独立的,如果要交互通讯,这时候,就需要组件之间数据互通了 往常我们讲的都是数据传递,子传父,父传子,都没有说子和父,父与子之间的数据互通 父亲传递给儿子数据,儿子触发一个父亲方法,将最 ...

  9. [USACO 4.2] 完美的牛栏

    ★★☆   输入文件:stall4.in   输出文件:stall4.out   简单对比 时间限制:1 s   内存限制:128 MB USACO/stall4(译by Felicia Crazy) ...

  10. php处理管道文件流

    <?php #!/usr/local/bin/php -q function read(){ $fp = fopen("php://stdin", "r" ...