题目:http://poj.org/problem?id=3539

题目大意是给定 a, b, c,求 1~h 内有多少个数可以被 a, b, c 通过加减法组成;

这是今天刚讲的神奇的——同余类 bfs 问题!

大概就是选定一个模数,就选最小的(常数可能会比较小?),不妨令作 a,构建一系列点,组成 mod a 剩余系;

然后我们要找到每个点的最小可达数,然后它加上若干个 a 就都是可达的;

对于一个点 x,它可以转移到 (x + b) % b,代价是 b ;c 同理;

从起点开始 bfs,对于本题来说就是1%a,且 dis[1%a] = 1(层数),求出 dis[] 数组,就是每个点的最小可达数;

计算答案就是对于每个余数(点),看看在1~h 中有多少个它加若干 a 可达的数,也就是 (h - dis[x]) / a + 1;

不过其实不 bfs 也可以,反正就是求最短路;

注意 dis 是 long long 哟~

代码如下:

dijkstra:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
ll h,ans,dis[maxn];
int a,b,c,hd[maxn],ct;
priority_queue<pair<ll,int> >q;
bool vis[maxn];
struct N{
int to,nxt,w;
N(int t=,int n=,int w=):to(t),nxt(n),w(w) {}
}ed[maxn<<];
void add(int x,int y,int z){ed[++ct]=N(y,hd[x],z); hd[x]=ct;}
void dijkstra()
{
memset(dis,0x3f,sizeof dis);
dis[%a]=; q.push(make_pair(-,%a));
while(q.size())
{
int x=q.top().second; q.pop();
if(vis[x])continue;
vis[x]=;
for(int i=hd[x];i;i=ed[i].nxt)
{
int u=ed[i].to;
if(dis[u]>dis[x]+ed[i].w)
{
dis[u]=dis[x]+ed[i].w;
q.push(make_pair(-dis[u],u));
}
}
}
}
int main()
{
scanf("%lld%d%d%d",&h,&a,&b,&c);
if(a>b)swap(a,b); if(a>c)swap(a,c);
for(int i=;i<a;i++)
{
add(i,(i+b)%a,b);
add(i,(i+c)%a,c);
}
dijkstra();
for(int i=;i<a;i++)
{
if(dis[i]>h)continue;//!
ans+=(ll)(h-dis[i])/a+;
}
printf("%lld\n",ans);
return ;
}

dijkstra

spfa:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
ll h,ans,dis[maxn];
int a,b,c,hd[maxn],ct;
queue<int>q;
bool vis[maxn];
struct N{
int to,nxt,w;
N(int t=,int n=,int w=):to(t),nxt(n),w(w) {}
}ed[maxn<<];
void add(int x,int y,int z){ed[++ct]=N(y,hd[x],z); hd[x]=ct;}
void spfa()
{
memset(dis,0x3f,sizeof dis);
dis[%a]=; q.push(%a); vis[%a]=;
while(q.size())
{
int x=q.front(); q.pop(); vis[x]=;
for(int i=hd[x];i;i=ed[i].nxt)
{
int u=ed[i].to;
if(dis[u]>dis[x]+ed[i].w)
{
dis[u]=dis[x]+ed[i].w;
if(!vis[u])vis[u]=,q.push(u);
}
}
}
}
int main()
{
scanf("%lld%d%d%d",&h,&a,&b,&c);
if(a>b)swap(a,b); if(a>c)swap(a,c);
for(int i=;i<a;i++)
{
add(i,(i+b)%a,b);
add(i,(i+c)%a,c);
}
spfa();
for(int i=;i<a;i++)
{
if(dis[i]>h)continue;//!
ans+=(ll)(h-dis[i])/a+;
}
printf("%lld\n",ans);
return ;
}

spfa

bfs:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
ll h,ans;
ll a,b,c,dis[maxn];//ll
queue<int>q;
bool vis[maxn];
void bfs()
{
memset(dis,0x3f,sizeof dis);
dis[%a]=; q.push(%a); vis[%a]=;
while(q.size())
{
int x=q.front(),u; q.pop(); vis[x]=;
if(dis[u=(x+b)%a]>dis[x]+b)
{
dis[u]=dis[x]+b;
if(!vis[u])/*vis[u]=1,*/q.push(u);
}
if(dis[u=(x+c)%a]>dis[x]+c)
{
dis[u]=dis[x]+c;
if(!vis[u])/*vis[u]=1,*/q.push(u);
}
}
}
int main()
{
scanf("%lld%lld%lld%lld",&h,&a,&b,&c);
if(a>b)swap(a,b); if(a>c)swap(a,c);
bfs();
for(int i=;i<a;i++)
{
if(dis[i]>h)continue;//!
ans+=(h-dis[i])/a+;
}
printf("%lld\n",ans);
return ;
}

poj3539 Elevator——同余类bfs的更多相关文章

  1. [poj 3539] Elevator (同余类bfs)

    Description Edward works as an engineer for Non-trivial Elevators: Engineering, Research and Constru ...

  2. poj 3539 Elevator——同余类bfs

    题目:http://poj.org/problem?id=3539 考虑把层数分为模a剩余系.同类内可通过+若干个a走到. 不同类之间需要通过+b.+c来走到. 需要求出每一类中最小的能走到的.即最短 ...

  3. 同余类BFS的一些瞎吹

    同余类BFS的题,是个OIer基本上都会见过一些,最好的例子就是NOIP 2018 day1  T2---货币系统 虽然这题其实是什么背包就能解决的题目,但数据一变大,出题人坏一点,就没了.... 同 ...

  4. POJ 3539 Elevator(同余类BFS)

    题意 有一部电梯,最初停在1层. 电梯有4个按键,上升a,b,c层,回到一层. 求从一层出发.能到达1~h的哪些楼层. (h<=1018,a,b,c<=105) 题解 这种h能大的图论,一 ...

  5. BZOJ2118: 墨墨的等式(同余类BFS)(数学转为图论题)

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2944  Solved: 1206[Submit][Status][Discu ...

  6. POJ3539 Elevator

    Time Limit: 4000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu Description Edward wor ...

  7. Luogu4156 WC2016 论战捆竹竿 KMP、同余类最短路、背包、单调队列

    传送门 豪华升级版同余类最短路-- 官方题解 主要写几个小trick: \(1.O(nm)\)实现同余类最短路: 设某一条边长度为\(x\),那么我们选择一个点,在同余类上不断跳\(x\),可以形成一 ...

  8. NOIP 2017 小凯的疑惑(同余类)

    题意 给出两个互质的数a,b问最大的不能被xa+yb(x,y>=0)表示的数.(a,b<=109) 题解 NOIPday1T1一道数论题,不知埋葬了多少人的梦想. 用同余类去解释. 我们依 ...

  9. BZOJ2118 墨墨的等式[同余类最短路]

    声明:关于这题的$O(mn)$尚且未深入理解,虽然之前有跟这位神仙聊过做法但并没太懂.. $O(mn\log m)$同余最短路做法: 首先不妨抽出最小的$a_i=m$,那么剩余的$a$如果可以表示出$ ...

随机推荐

  1. 02C++基本语法

    基本语法 2.1.1单行注释 // 2.1.2多行注释 /* * */ 2.1.3标识符 C++ 标识符是用来标识变量.函数.类.模块,或任何其他用户自定义项目的名称.一个标识符以字母 A-Z 或 a ...

  2. relax 网站

    1. Calm 网站链接:http://www.calm.com/ 这个网站就像它的名字一样“平和”,网站的设计是通过自然图片(阳光下的暖流.流淌的消息等)与缓缓的音乐相结合,帮你在短时间内即可放松下 ...

  3. DH密钥交换算法

    DH密钥交换算法:DH的全称为Diffie-Hellman ,该算法可以在需要安全传输的前提下,确定双方的对称密钥,该算法的核心在于双方的私钥没有进入网络传输流程,根据对方的公钥和己方的私钥,可以计算 ...

  4. Luogu P4549 裴蜀定理 / Min

    思路 题目已经给出了正解.我们只需要将裴蜀定理推广到若干数的线性组合就可以做这道题了 要注意的是需要在输入的时候取一个绝对值.因为可能会有负数存在.我之前也写过裴蜀定理的证明,要看的话点这里 吐槽 第 ...

  5. linux top-显示或管理执行中的程序

    推荐:更多linux 性能监测与优化 关注:linux命令大全 top命令可以实时动态地查看系统的整体运行情况,是一个综合了多方信息监测系统性能和运行信息的实用工具.通过top命令所提供的互动式界面, ...

  6. python下载网络文件

    python下载网络文件 制作人:全心全意 下载图片 #!/usr/bin/python #-*- coding: utf-8 -*- import requests url = "http ...

  7. illuminate/routing 源码分析之注册路由

    我们知道,在 Laravel 世界里,外界传进来一个 Request 时,会被 Kernel 处理并返回给外界一个 Response.Kernel 在处理 Request 时,会调用 illumina ...

  8. shoppping collection

    personal shopping collections shop Table of Contents 1. phone network 2. band share 3. Motorcycle He ...

  9. CKplayer:视频推荐和分享插件设置

    如果想去掉播放结束后显示精彩视频推荐的插件,可以打开ckplayer.js和ckplayer.xml,找到以下代码,然后注释掉即可: control_rel: 'related.swf,ckplaye ...

  10. Regular Number 字符串匹配算法 Shift_and

    Using regular expression to define a numeric string is a very common thing. Generally, use the shape ...