【bzoj3576】 Hnoi2014—江南乐
http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接)
题意
给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分成$m$堆,$m$是玩家任选的不少于$2$的正整数,这$m$堆石子中最多的一堆与最少的一堆之差不超过$1$,问是否存在先手必胜。
Solution
对每一个子游戏考虑如何求解$SG$函数。
假设当前一堆中有$i$石子,我们想把它分成$j$堆,那么石子数为$k=\lfloor{i/j}\rfloor+1$的有$x=i-j*k$堆,石子数为$k$的有$y=i-x$堆。而此时的$SG[i]=[(x\&1)*SG[k+1]]~XOR~[(y\&1)*SG[k]]$。考虑到$k$的取值只有$\sqrt{i}$种,我们可以枚举$j$,那么怎么确定$x,y$的奇偶性呢。$x$的奇偶性只与$j$有关,而一旦$x$确定,$y$就确定了。所以$x,y$的奇偶性只有$2$种情况,分开讨论一下就好了。
代码
// bzoj3576
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<60)
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100010;
int T,F,n,SG[maxn],v[maxn]; int main() {
scanf("%d%d",&T,&F);
for (int i=0;i<F;i++) SG[i]=0;
for (int i=F;i<=100000;i++) {
for (int k,pos,j=2;j<=i;j=pos+1) {
k=i/j;pos=i/k;
int x=i-k*j,y=j-x;
v[((x&1)*SG[k+1])^((y&1)*SG[k])]=i;
if (j+1<=min(pos,i)) {
x=i-k*(j+1),y=j+1-x;
v[((x&1)*SG[k+1])^((y&1)*SG[k])]=i;
}
}
for (int j=0;;j++) if (v[j]!=i) {SG[i]=j;break;}
//printf("%d ",SG[i]);
}
while (T--) {
scanf("%d",&n);
int ans=0;
for (int x,i=1;i<=n;i++) {
scanf("%d",&x);
ans^=SG[x];
}
printf(ans ? "1" : "0");
if (T) printf(" ");
}
return 0;
}
【bzoj3576】 Hnoi2014—江南乐的更多相关文章
- bzoj3576: [Hnoi2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理
3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1929 Solved: 686[Submit][Status ...
- 【BZOJ3576】江南乐(博弈论)
[BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...
- 洛谷 P3235 [HNOI2014]江南乐 解题报告
P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...
- 【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学
题目描述 两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过 ...
- 【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...
- [HNOI2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- 洛谷P3235 [HNOI2014]江南乐(Multi-SG)
题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...
- luogu P3235 [HNOI2014]江南乐
传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...
随机推荐
- 20155213免考项目——bof进阶及简易的HIDAttack
20155213免考项目--bof进阶及简易的HIDAttack 目录 序 任务一:构造Shellcode(64位) 任务二:64位Shellcode的注入 任务三:32位及64位bof攻击(开启堆栈 ...
- Hiberante持久化对象的3种状态
近日一同事问我关于Hibernate中对象的3种状态的问题,因此特意总结一下.在Hibernate中对象是有以下3中状态: 瞬时态(transient object): 没有OID值,没有被s ...
- C++ STL 学习笔记__(8)map和multimap容器
10.2.9 Map和multimap容器 map/multimap的简介 ² map是标准的关联式容器,一个map是一个键值对序列,即(key,value)对.它提供基于key的快速检索能力. ² ...
- CS190.1x Scalable Machine Learning
这门课是CS100.1x的后续课,看课程名字就知道这门课主要讲机器学习.难度也会比上一门课大一点.如果你对这门课感兴趣,可以看看我这篇博客,如果对PySpark感兴趣,可以看我分析作业的博客. Cou ...
- OLEDB 命令转换组件的用法
在数据流任务组件中,OLEDB 命令转换组件对输入的每行数据调用TSQL,该组件能够把输入的数据作为参数,因此,该转换组件主要用于运行参数化的查询. 命令转换组件的配置十分简单,只有三个可编辑属性,位 ...
- vue初学实践之路——vue简单日历组件(2)
上一篇我们已经实现了基本的日历显示功能,这一次我们要加上预定的功能 废话不多说,上代码 <div id="calendar"> <!-- 年份 月份 --> ...
- 【原】Github+Hexo+NextT搭建个人博客【1】
该系列博客列表请访问:http://www.cnblogs.com/penglei-it/category/934299.html 摘要 GitHub 是一个开源项目的托管网站,相信很多人都听过.在上 ...
- [PLC]ST语言四:INV_MEP_MEF_PLS_PLF_MC_MCR
一:INV_MEP_MEF_PLS_PLF_MC_MCR 说明:简单的顺控指令不做其他说明. 控制要求:无 编程梯形图: 结构化编程ST语言: (*运算结果的反转INV(EN);*) M415:=in ...
- Linux内核第一节
存储程序计算机工作模型 存储程序计算机——冯诺依曼体系结构 IP:寄存器,总是指向内存的代码段.IP(16位) 32位(EIP) 64位(RIP). 内存:保存数据和指令. CPU:CPU从IP指向的 ...
- 转发npm发布包的过程
老板,来个npm账号! 因为你的包是要放在npm上的,所以,没有npm的账号,根本什么活都干不了. 在npm上注册一个账号是很简单的,随便填一下用户名密码邮箱,然后人家就会发个邮件给你,然后就注册成功 ...