【bzoj3576】 Hnoi2014—江南乐
http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接)
题意
给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分成$m$堆,$m$是玩家任选的不少于$2$的正整数,这$m$堆石子中最多的一堆与最少的一堆之差不超过$1$,问是否存在先手必胜。
Solution
对每一个子游戏考虑如何求解$SG$函数。
假设当前一堆中有$i$石子,我们想把它分成$j$堆,那么石子数为$k=\lfloor{i/j}\rfloor+1$的有$x=i-j*k$堆,石子数为$k$的有$y=i-x$堆。而此时的$SG[i]=[(x\&1)*SG[k+1]]~XOR~[(y\&1)*SG[k]]$。考虑到$k$的取值只有$\sqrt{i}$种,我们可以枚举$j$,那么怎么确定$x,y$的奇偶性呢。$x$的奇偶性只与$j$有关,而一旦$x$确定,$y$就确定了。所以$x,y$的奇偶性只有$2$种情况,分开讨论一下就好了。
代码
// bzoj3576
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<60)
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100010;
int T,F,n,SG[maxn],v[maxn]; int main() {
scanf("%d%d",&T,&F);
for (int i=0;i<F;i++) SG[i]=0;
for (int i=F;i<=100000;i++) {
for (int k,pos,j=2;j<=i;j=pos+1) {
k=i/j;pos=i/k;
int x=i-k*j,y=j-x;
v[((x&1)*SG[k+1])^((y&1)*SG[k])]=i;
if (j+1<=min(pos,i)) {
x=i-k*(j+1),y=j+1-x;
v[((x&1)*SG[k+1])^((y&1)*SG[k])]=i;
}
}
for (int j=0;;j++) if (v[j]!=i) {SG[i]=j;break;}
//printf("%d ",SG[i]);
}
while (T--) {
scanf("%d",&n);
int ans=0;
for (int x,i=1;i<=n;i++) {
scanf("%d",&x);
ans^=SG[x];
}
printf(ans ? "1" : "0");
if (T) printf(" ");
}
return 0;
}
【bzoj3576】 Hnoi2014—江南乐的更多相关文章
- bzoj3576: [Hnoi2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理
3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1929 Solved: 686[Submit][Status ...
- 【BZOJ3576】江南乐(博弈论)
[BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...
- 洛谷 P3235 [HNOI2014]江南乐 解题报告
P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...
- 【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学
题目描述 两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过 ...
- 【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...
- [HNOI2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- 洛谷P3235 [HNOI2014]江南乐(Multi-SG)
题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...
- luogu P3235 [HNOI2014]江南乐
传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...
随机推荐
- Android APK 签名比对(转)
Android apk签名的过程 1. 生成MANIFEST.MF文件: 程序遍历update.apk包中的所有文件(entry),对非文件夹非签名文件的文件,逐个生成SHA1的数字签名信息,再用Ba ...
- 20155330 《网络对抗》 Exp2 后门原理与实践
20155330 <网络对抗> 实验二 后门原理与实践 基础问题回答 例举你能想到的一个后门进入到你系统中的可能方式? 在网站上下载非官方软件,所下载的软件中携带伪装过的后门程序. 例举你 ...
- POJ 3278&&2049&&3083
这次的题目叫图的深度&&广度优先遍历. 然后等我做完了题发现这是DFS&&BFS爆搜专题. 3278:题目是经典的FJ,他要抓奶牛.他和牛(只有一头)在一条数轴上,他们 ...
- mfc CImageList和CListCtrl
知识点: CImageList类的运用 CListCtrl添加图标 一.CImageList CImageList*SetImageList(CImageList*pImageList,int nIm ...
- 【转载】C++文件读写详解(ofstream,ifstream,fstream)
原文:http://blog.csdn.net/kingstar158/article/details/6859379 在看C++编程思想中,每个练习基本都是使用ofstream,ifstream,f ...
- LOJ#6354. 「CodePlus 2018 4 月赛」最短路[最短路优化建图]
题意 一个 \(n\) 个点的完全图,两点之间的边权为 \((i\ xor\ j)*C\) ,同时有 \(m\) 条额外单向路径,问从 \(S\) 到 \(T\) 的最短路. \(n\leq 10^5 ...
- python常用算法实现
排序是计算机语言需要实现的基本算法之一,有序的数据结构会带来效率上的极大提升. 1.插入排序 插入排序默认当前被插入的序列是有序的,新元素插入到应该插入的位置,使得新序列仍然有序. def inser ...
- 【亲测有效】Nodepad++/Sublime Text3中Python脚本运行出现语法错误:IndentationError: unindent does not match any outer indentation level解决策略
我在开发游戏的时候,发现一个python脚本,本来都运行好好的,然后写了几行代码,而且也都确保每行都对齐了,但是运行的时候,却出现语法错误: IndentationError: unindent do ...
- NO--12模拟服务器端请求之node.js
最近几天项目上线,工作比较忙,没时间更博了,好在今天有点时间并且同事问道我一个问题,正好一块解决 使用 Vue 写项目肯定会遇到一个问题,如何模拟服务端请求数据,那这就需要用到 node.js 了. ...
- StackGAN 阅读笔记
StackGAN 阅读笔记 StackGAN论文下载链接(arxiv) 创新点 提出多尺度的GAN Stage-I GAN Stage-II GAN Stage-I GAN 主要是根据文本描述抓取目标 ...