显示图:

明确给出了图中的各顶点及边

隐式图:

仅给出初始节点、目标节点及产生子节点的条件(一般有问题提议隐含给出)的情况下,构造一个图。

回溯法:

从初始状态出发,在隐式图中以深度优先的方式搜索问题的解。当发现不满足求解条件时,就回溯,尝试其他路径。通俗的说,回溯法就是一种能进则进,进不了就换,换不了就退的基本搜索方法。

回溯法的算法框架和思想:

1、回溯法的算法框架及思想
回溯法是一种搜索算法,解决问题时,首先应明确搜索范围,即问题所有可能解的组成范围、这个范围越小越好,且至少包含问题的一个(最优)解。 为了定义搜索范围,需要明确以下几个方面:
(1)问题解的形式:回溯法看重问题的解能够表示成一个n元组(x1,x2...xn)的形式。
(2)显约束:对分量xi(i=1,2...n)的取值范围限定。
(3)隐约束:为满足问题的解而对不同分量之间施加的约束。
(4)解空间:对于问题的一个实例,解向量满足显约束的所有n元组构成了该实例的一个解空间。
注意:同一个问题的显约束可能有多种,相应解空间的大小就会不同,通常情况下,解空间越小,算法效率越高。
 

子集树:

子集树是使用回溯法解题时经常遇到的一种典型的解空间树。

子集树中所有非叶子节点均有左右两个分支,我们一般设定左分支为1,右分支为0。树的根结点表示初始状态,中间节点表示某种情况下的中间状态,叶子节点表示结束状态。分支表示从一个状态过度到另一个状态的行为。从根节点到叶结点的路径表示一个可能解。

示例:

从n个元素中选取一些元素

  • 这类子集树通常有2n个叶结点,其结点总个数为2n+1-1。
  • 遍历子集树的任何算法均需O(2n)的计算时间。

子集树形式:(下面以n==3为例)

对于根节点0号元素,它有两个分支,左边是1,右边是0。左边就代表我们会选择第0号元素,右边就代表我们不选取第0号元素。之后的类似。

对于叶节点P1表示:3个元素都选

对于叶节点P2表示:选取元素编号为:0,1

对于叶节点P3表示:选取元素编号为:0,2

......

排列树:

排列树是用回溯法解题时经常遇到的第二种典型的解空间树。

当所给的问题是从n个元素的排列中找到满足某种性质的一个排列时,相应的解空间树就是排列树。

  • 排列树通常有n!个叶结点。
  • 因此遍历排列树需要O(n!)的计算时间

示例:

给你3个元素(1,2,3),它的排列树如下:

从根节点A,到它的子节点B、C、D这个路径是来选择第一个元素,走到B节点代表第一个元素选取的是1,走到C节点代表第一个元素选取的是2,后面的类似

满m叉树:

满m叉树是用回溯法解题时经常遇到的第三种典型的解空间树,也称为组合树。

当所给问题的n个元素中每一个元素均有m种选择,要求确定其中的一种选择,使得对这n个向量的选择结果组成的向量满足某种性质。

n==3的m叉树

除了叶节点之外,每一个节点都有3个子节点,这就代表的3种选择

回溯法、子集树、排列树、满m叉树的更多相关文章

  1. python 回溯法 子集树模板 系列 —— 18、马踏棋盘

    问题 将马放到国际象棋的8*8棋盘board上的某个方格中,马按走棋规则进行移动,走遍棋盘上的64个方格,要求每个方格进入且只进入一次,找出一种可行的方案. 分析 说明:这个图是5*5的棋盘. 图片来 ...

  2. python 回溯法 子集树模板 系列 —— 17、找零问题

    问题 有面额10元.5元.2元.1元的硬币,数量分别为3个.5个.7个.12个.现在需要给顾客找零16元,要求硬币的个数最少,应该如何找零?或者指出该问题无解. 分析 元素--状态空间分析大法:四种面 ...

  3. python 回溯法 子集树模板 系列 —— 16、爬楼梯

    问题 某楼梯有n层台阶,每步只能走1级台阶,或2级台阶.从下向上爬楼梯,有多少种爬法? 分析 这个问题之前用分治法解决过.但是,这里我要用回溯法子集树模板解决它. 祭出元素-状态空间分析大法:每一步是 ...

  4. python 回溯法 子集树模板 系列 —— 15、总结

    作者:hhh5460 时间:2017年6月3日 用回溯法子集树模板解决了这么多问题,这里总结一下使用回溯法子集树模板的步骤: 1.确定元素及其状态空间(精髓) 对每一个元素,遍历它的状态空间,其它的事 ...

  5. python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)

    问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog ...

  6. python 回溯法 子集树模板 系列 —— 10、m着色问题

    问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化问题 若一个图最少 ...

  7. python 回溯法 子集树模板 系列 —— 9、旅行商问题(TSP)

    问题 旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初 ...

  8. python 回溯法 子集树模板 系列 —— 8、图的遍历

    问题 一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E -- ...

  9. python 回溯法 子集树模板 系列 —— 3、0-1背包问题

    问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其 ...

  10. python 回溯法 子集树模板 系列 —— 13、最佳作业调度问题

    问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成.每一个作业必须先由机器1 处理,然后由机器2处理. 试设计一个算法找出完成这n个任务的最佳调度,使其机器2完成各作业时间之和达 ...

随机推荐

  1. Detectron2 快速开始,使用 WebCam 测试

    本文将引导快速使用 Detectron2 ,介绍用摄像头测试实时目标检测. Detectron2: https://github.com/facebookresearch/detectron2 环境准 ...

  2. Unity优化 1

    浅谈Unity中的GC以及优化(转) Unity 官方文档,正巧在博客园发现了已经有位大神(zblade)把原文翻译出来了,而且质量很高~,译文地址 在这里.下面我就可耻地把译文搬运了过来,作为上面思 ...

  3. Openstack Keystone 认证服务(四)

    Openstack Keystone 认证服务(四) keystone 的安装完全依赖ocata的源, 如果没有建议自己搭建. 否则用的源不对会产生各种奇葩问题. 创建keystone库和用户: ## ...

  4. selenium爬虫 | 爬取疫情实时动态(二)

    '''@author:Billie更新说明:1-28 17:00 项目开始着手,spider方法抓取到第一条疫情数据,save_data_csv方法将疫情数据保存至csv文件1-29 13:12 目标 ...

  5. os-Bytes环境变量劫持

    信息收集 netdiscovery -i eth0 nmap -sV -sC 192.168.43.74 -oA os-Bytes gobuster -u 192.168.43.74 -w /usr/ ...

  6. SYSTEM_SHMCONSTR_LOGON_FAILED错误解决办法

    如果你在调用WebDynpro程序时,发现st22里有如上图所示的报错信息,可以参考note:1318269所列举的方法来进行处理.大概的方法就是,通过SE80,执行任意的webdypro程序,例如& ...

  7. Springmvc中参数的绑定

    .处理器适配器在执行Handler之前需要把http请求的key/value数据绑定到Handler方法形参数上. 1.默认支持的参数类型: HttpServletRequest,HttpServle ...

  8. 1.8V转3V,1,8V转3.3V电源芯片的规格书参数

    1.8V电平如何稳压稳定输出3V或者3.3V,就需要用到1.8V转3V,1,8V转3.3V电源芯片,就PW5100(低功耗,外围简单),PW5200A是可调输出电压,可以输出电压根据外围电阻来设置命令 ...

  9. ElasticSearch极简入门总结

    一,目录 安装es 项目添加maven依赖 es客户端组件注入到spring容器中 es与mysql表结构对比 索引的删除创建 文档的crud es能快速搜索的核心-倒排索引 基于倒排索引的精确搜索. ...

  10. 获取html中某些标签的值

    一.获取单选按钮radio的值 <!doctype html> <html lang="en"> <head> <meta charset ...