吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集高层操作
import tempfile
import tensorflow as tf # 1. 列举输入文件。
# 输入数据生成的训练和测试数据。
train_files = tf.train.match_filenames_once("F:\\output.tfrecords")
test_files = tf.train.match_filenames_once("F:\\output_test.tfrecords")
# 定义解析TFRecord文件的parser方法。
# 解析一个TFRecord的方法。
def parser(record):
features = tf.parse_single_example(record,features={'image_raw':tf.FixedLenFeature([],tf.string),'pixels':tf.FixedLenFeature([],tf.int64),'label':tf.FixedLenFeature([],tf.int64)})
decoded_images = tf.decode_raw(features['image_raw'],tf.uint8)
retyped_images = tf.cast(decoded_images, tf.float32)
images = tf.reshape(retyped_images, [784])
labels = tf.cast(features['label'],tf.int32)
#pixels = tf.cast(features['pixels'],tf.int32)
return images, labels
# 定义训练数据集。
image_size = 299 # 定义神经网络输入层图片的大小。
batch_size = 100 # 定义组合数据batch的大小。
shuffle_buffer = 10000 # 定义随机打乱数据时buffer的大小。 # 定义读取训练数据的数据集。
dataset = tf.data.TFRecordDataset(train_files)
dataset = dataset.map(parser) # 对数据进行shuffle和batching操作。这里省略了对图像做随机调整的预处理步骤。
dataset = dataset.shuffle(shuffle_buffer).batch(batch_size) # 重复NUM_EPOCHS个epoch。
NUM_EPOCHS = 10
dataset = dataset.repeat(NUM_EPOCHS) # 定义数据集迭代器。
iterator = dataset.make_initializable_iterator()
image_batch, label_batch = iterator.get_next()
# 定义神经网络结构和优化过程。
# 定义神经网络的结构以及优化过程。这里与7.3.4小节相同。
def inference(input_tensor, weights1, biases1, weights2, biases2):
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2 INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000 weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE])) weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) y = inference(image_batch, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=label_batch)
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
# 定义测试用数据集。
# 定义测试用的Dataset。
test_dataset = tf.data.TFRecordDataset(test_files)
test_dataset = test_dataset.map(parser)
test_dataset = test_dataset.batch(batch_size) # 定义测试数据上的迭代器。
test_iterator = test_dataset.make_initializable_iterator()
test_image_batch, test_label_batch = test_iterator.get_next() # 定义测试数据上的预测结果。
test_logit = inference(test_image_batch, weights1, biases1, weights2, biases2)
predictions = tf.argmax(test_logit, axis=-1, output_type=tf.int32) # 声明会话并运行神经网络的优化过程。
with tf.Session() as sess:
# 初始化变量。
sess.run((tf.global_variables_initializer(),tf.local_variables_initializer())) # 初始化训练数据的迭代器。
sess.run(iterator.initializer) # 循环进行训练,直到数据集完成输入、抛出OutOfRangeError错误。
while True:
try:
sess.run(train_step)
except tf.errors.OutOfRangeError:
break test_results = []
test_labels = []
# 初始化测试数据的迭代器。
sess.run(test_iterator.initializer)
# 获取预测结果。
while True:
try:
pred, label = sess.run([predictions, test_label_batch])
test_results.extend(pred)
test_labels.extend(label)
except tf.errors.OutOfRangeError:
break # 计算准确率
correct = [float(y == y_) for (y, y_) in zip (test_results, test_labels)]
accuracy = sum(correct) / len(correct)
print("Test accuracy is:", accuracy)

吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集高层操作的更多相关文章
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:队列操作
import tensorflow as tf #1. 创建队列,并操作里面的元素. q = tf.FIFOQueue(2, "int32") init = q.enqueue_m ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:windows操作系统安装指定版本的tensorflow
pip install tensorflow==1.14.0
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集基本使用方法
import tempfile import tensorflow as tf # 1. 从数组创建数据集. input_data = [1, 2, 3, 5, 8] dataset = tf.dat ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:循环神经网络预测正弦函数
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 定义RNN的参数. HIDDEN_SIZE = ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入数据处理框架
import tensorflow as tf # 1. 创建文件列表,通过文件列表创建输入文件队列 files = tf.train.match_filenames_once("F:\\o ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入文件队列
import tensorflow as tf # 1. 生成文件存储样例数据. def _int64_feature(value): return tf.train.Feature(int64_li ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:多线程队列操作
import tensorflow as tf #1. 定义队列及其操作. queue = tf.FIFOQueue(100,"float") enqueue_op = queue ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:图像预处理完整样例
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #随机调整图片的色彩,定义两种顺序. def di ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:TensorFlow图像处理函数
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #读取图片 image_raw_data = tf ...
随机推荐
- PC端页面适应不同的分辨率的方法 (转载)
原文地址:https://blog.csdn.net/fengzhen8023/article/details/81281117 上周完成一个PC端的项目,对于我这样的小白来说,这个项目里面最大的问题 ...
- zabbix_agent_win
http://mayulin.blog.51cto.com/1628315/514447/ http://www.cnblogs.com/likehua/p/3968689.html 先下载win客户 ...
- Failed to connect to raw.githubusercontent.com port 443: Connection refused
问题:macOS安装Homebrew时总是报错(Failed to connect to raw.githubusercontent.com port 443: Connection refused) ...
- 201812-2 小明放学 Java
思路: 红绿灯每种灯亮划分区间,在[0,r]区间内红灯亮,在(r,g+r]区间内绿灯亮,在(r+g,r+g+y]区间内黄灯亮,在划分好区间后只需要判断当小明到达红绿灯时是哪个灯在亮,就可以判断出通过红 ...
- C# 互操作性入门系列(二):使用平台调用调用Win32 函数
好文章搬用工模式启动ing ..... { 文章中已经包含了原文链接 就不再次粘贴了 言明 改文章是一个系列,但只收录了2篇,原因是 够用了 } --------------------------- ...
- 在Linux下 MySQL错误 ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES) 解决办法【很管用】
一般这个错误是由密码错误引起,解决的办法自然就是重置密码. 假设我们使用的是root账户. 1.重置密码的第一步就是跳过MySQL的密码认证过程,方法如下: #vim /etc/my.cnf(注:wi ...
- INSTALL_FAILED_SHARED_USER_INCOMPATIBLE错误解决
Target device: smartisan-yq601-3fa1a5dcInstalling APK: /Users/wangliang/workspace/emm-android/build/ ...
- vscode中c/c++头文件引用找不到飘红
正在进行 GTK 学习, 但是在 vscode GTK 的头文件找不到(头文件引用底下飘红, 逼死强迫症), 影响敲字键入速度. 解决一下该问题-- vscode中c/c++头文件引用找不到(#inc ...
- NoSQL:
NoSQL:NoSQL(NoSQL = Not Only SQL ),意即"不仅仅是SQL". 在现代的计算系统上每天网络上都会产生庞大的数据量. 这些数据有很大一部分是由关系数据 ...
- 文献阅读报告 - Pedestrian Trajectory Prediction With Learning-based Approaches A Comparative Study
概述 本文献是一篇文献综述,以自动驾驶载具对外围物体行动轨迹的预测为切入点,介绍了基于运动学(kinematics-based)和基于机器学习(learning-based)的两大类预测方法. 并选择 ...