威廉需要调整圣剑的状态,因此他将瑟尼欧尼斯拆分护符,组成了一个nnn行mmm列的矩阵。

每一个护符都有自己的魔力值。现在为了测试圣剑,你需要将这些护符分成 A,B两部分。

要求如下:

  1. 圣剑的所有护符,恰好都属于两部分中的一部分。

  2. 每个部分内部的方块之间,可以通过上下左右相互到达,而且每个内部的方块之间互相到达,最多允许拐一次弯。

例如

AAAAA  AAAAA  AAAAA
AABAA  BaAAA  AAABB
ABBBA  BBAAA  AAABB
AABAA  BaAAA  ABBBB
AAAAA  AAAAA  BBBBB   (1)     (2)     (3)      

其中(1)(2)是不允许的分法,(3)是允许的分法。在(2)中,a属于A区域,这两个a元素之间互相到达,没有办法最多只拐一次弯。

现在要问,所有合法的分法中,A区域的极差与B区域的极差 中间较大的一个的 最小值 是多少?

好心而可爱的在一旁默默观察奈芙莲悄悄地告诉你,极差就是区域内最大值减去最小值。

输入输出格式

输入格式:

第一行两个自然数n,mn,mn,m

接下来nnn行,每行mmm个自然数Ai,jA_{i,j}Ai,j​表示权值

输出格式:

一个整数表示答案。

输入输出样例

输入样例#1:

4 4
1 12 6 11
11 4 2 14
10 1 9 20
4 17 13 10
输出样例#1:

11

说明

样例解释

1  12 6        11
11 4 2 14
10 1 9 20
4 17 13 10

分法不唯一,如图是一种合法的分法。左边部分极差12-1=11,右边一块极差20-10=10,所以答案取这两个中较大者11。没有别的分法,可以使答案更小。

数据范围与约定

测试点 n m
#1-2 ≤10\le 10≤10 ≤10\le 10≤10
#3-4 1 ≤2000\le 2000≤2000
#5-7 ≤200\le 200≤200 ≤200\le 200≤200
#8-10 ≤2000\le 2000≤2000 ≤2000\le 2000≤2000

对于所有的权值1≤Ai,j≤1091\le A_{i,j} \le 10^91≤Ai,j​≤109

题解

看到最大最小还是要考虑二分呐。。。虽然本蒟蒻尝试了想二分然而并不知道怎么check
首先我们二分差值
check的思路非常妙,由题我们知道我们选出来的A是在每一行的长度是单调且连续的,由于A和B可以互换,我们不妨设最大极值在A中,那么A这样一个梯状的区域的顶角处于某个角落,我们不妨设为左上角,然后将矩阵做3次旋转就可以考虑到所有情况。

好了现在A的顶点在左上角,我们要判定条件是否成立。
首先最大值和最小值一定不在一起,
我们不妨设最大值在A中,那么我们从第一行开始找到第一个与最大值差值在check范围内的位置p
在第二行不超过p的位置同样找一个这样的边界,
这样子我们就将矩阵划分为了两个区域:
左边区域一定满足条件,因为是我们枚举出来的,那么我们再判断右区域满不满足【与最小值的差值在条件范围内】
就搞定啦~

【get 二分特性 + 矩阵旋转 + 最大值最小值划分思想】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 2017,maxm = 100005,INF = 2000000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
} int n,m,A[4][maxn][maxn],gmax = -INF,gmin = INF; void init(){
n = read();
m = read();
int x = 1,x1 = 1,x2 = n,x3 = m,y = 1,y1 = n,y2 = m,y3 = 1,t;
for (int i = 1; i <= n; i++){
for (int j = 1; j <= m; j++){
t = A[0][x][y++] = A[1][x1++][y1] = A[2][x2][y2--] = A[3][x3--][y3] = read();
if (t > gmax) gmax = t;
if (t < gmin) gmin = t;
}
x++; y = 1;
y1--; x1 = 1;
x2--; y2 = m;
y3++; x3 = m;
}
} int endi[maxn];
bool Check(int u,int d){
if (u & 1) swap(n,m);
endi[0] = m;
for (int i = 1,j; i <= n; i++){
for (j = 1; j <= endi[i - 1]; j++)
if (gmax - A[u][i][j] > d)
break;
endi[i] = j - 1;
}
for (int i = 1; i <= n; i++){
for (int j = endi[i] + 1; j <= m; j++)
if (A[u][i][j] - gmin > d){
if (u & 1) swap(n,m);
return false;
}
}
if (u & 1) swap(n,m);
return true;
} bool check(int d){
if (Check(0,d)) return true;
if (Check(1,d)) return true;
if (Check(2,d)) return true;
if (Check(3,d)) return true;
return false;
} void solve(){
int l = 0,r = gmax - gmin;
while (l < r){
int mid = (l + r) >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
cout<<l<<endl;
} int main()
{
init();
solve();
return 0;
}


洛谷P3933 Chtholly Nota Seniorious 【二分 + 贪心 + 矩阵旋转】的更多相关文章

  1. 洛谷3933 Chtholly Nota Seniorious 二分答案+贪心

    题目链接 题意 给你一个N*M的矩阵 (N,M <=2000)  把他分成两部分 使两部分的极差较大的一个最小  求这个最小值.然后分矩阵的要求是:每个部分内部的方块之间,可以通过上下左右相互到 ...

  2. 【Luogu】P3933 Chtholly Nota Seniorious

    [题意]将n*m矩阵分成两个区域,要求满足一定条件,求两区域内部极差较大值最小.n,m<=2000 [算法]二分 [题解]极差的数值满足单调性,所以考虑二分极差. 对于给定的极差,将所有数值排序 ...

  3. Chtholly Nota Seniorious

    题目背景 大样例下发链接: https://pan.baidu.com/s/1nuVpRS1 密码: sfxg こんなにも.たくさんの幸せをあの人に分けてもらった だから.きっと 今の.私は 谁が何と ...

  4. noip模拟赛 Chtholly Nota Seniorious

    题目背景 大样例下发链接: https://pan.baidu.com/s/1nuVpRS1 密码: sfxg こんなにも.たくさんの幸せをあの人に分けてもらった だから.きっと 今の.私は 谁が何と ...

  5. 洛谷 P2503 [HAOI2006]均分数据 随机化贪心

    洛谷P2503 [HAOI2006]均分数据(随机化贪心) 现在来看这个题就是水题,但模拟赛时想了1个小时贪心,推了一堆结论,最后发现贪心做 不了, 又想了半个小时dp 发现dp好像也做不了,在随机化 ...

  6. LOJ 2555 & 洛谷 P4602 [CTSC2018]混合果汁(二分+主席树)

    LOJ 题目链接 & 洛谷题目链接 题意:商店里有 \(n\) 杯果汁,第 \(i\) 杯果汁有美味度 \(d_i\),单价为 \(p_i\) 元/升.最多可以添加 \(l_i\) 升.有 \ ...

  7. 洛谷P3602 Koishi Loves Segments(贪心,multiset)

    洛谷题目传送门 贪心小水题. 把线段按左端点从小到大排序,限制点也是从小到大排序,然后一起扫一遍. 对于每一个限制点实时维护覆盖它的所有线段,如果超过限制,则贪心地把右端点最大的线段永远删去,不计入答 ...

  8. 洛谷P4155 [SCOI2015]国旗计划(贪心,树形结构,基数排序)

    洛谷题目传送门 \(O(n)\)算法来啦! 复杂度优化的思路是建立在倍增思路的基础上的,看看楼上几位巨佬的描述吧. 首先数组倍长是一样的.倍增法对于快速找到\(j\)满足\(l_j+m\le r_i\ ...

  9. 【题解】洛谷P2577 [ZJOI2005] 午餐(DP+贪心)

    次元传送门:洛谷P2577 思路 首先贪心是必须的 我们能感性地理解出吃饭慢的必须先吃饭(结合一下生活) 因此我们可以先按吃饭时间从大到小排序 然后就能自然地想到用f[i][j][k]表示前i个人在第 ...

随机推荐

  1. ln in Linux

    默认情况(硬连接) ln 目标 连接名称 ll -i 显示文件的inode信息,即文件节点信息 ➜  test1 ll -i 1.txt 27987655 -rw-r--r--  1 myuser   ...

  2. 数据库mysql的常规操作

    1. 什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的建立在计算机存储设备上的仓库. 简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进 ...

  3. DevOps之六 shell以及pipeline 命令部署

    一 使用shell命启动spring boot 项目 1. 使用shell停止当前项目 #!/bin/sh main() { clear pid=`ps -ef|grep xx.jar|grep -v ...

  4. mac 的一些使用技巧

    1. mac有一个自带的服务器环境, 目录路径 /Library/WebServer/Documents 打开终端  a. 启动 sudo apachectl start b. 重新启动 sudo a ...

  5. react native中props的使用

    react native中props的使用 一.props的使用 1:父组件传递的方式 在子组件中可以用this.props访问到父组件传递的值 <View> <Text> { ...

  6. 王者荣耀交流协会第三次Scrum立会

    会议时间:2017年10月22号   18:00-18:32,时长32分钟. 会议地点:中快餐厅二楼第二排倒数第二个桌子. 立会内容: 1.每位同学汇报了今日工作. 2.通过讨论我们决定用存excel ...

  7. Bate版本控制报告

    报告beta阶段2周中,项目的版本控制情况,不包括未在coding.net的部分. 包括不限于:check in (不是push)次数; 总词数为29次 check in log(时间.人员.mess ...

  8. 20172305 2018-2019-1 《Java软件结构与数据结构》第九周学习总结

    20172305 2018-2019-1 <Java软件结构与数据结构>第九周学习总结 教材学习内容总结 本周内容主要为书第十五章内容: 图(结点和结点之间的连接构成) 顶点:结点 边:结 ...

  9. 20172326『Java程序设计』课程结对编程练习_四则运算第二周阶段总结

    20172326『Java程序设计』课程结对编程练习_四则运算第二周阶段总结 小组成员 20172313 余坤澎 20172332 于欣月 20172326 康皓越 小组编程照片 设计思路 通过一个E ...

  10. 第17章 程序管理与SELinux初探

    什么是进程 触发任何一个事件时,系统都会将它定义为一个进程,并且给予这个进程一个ID,称为PID,同时依据触发这个进程的用户与相关属性关系,给予这个进程一组有效的权限设置. 进程与程序 进程:执行一个 ...