威廉需要调整圣剑的状态,因此他将瑟尼欧尼斯拆分护符,组成了一个nnn行mmm列的矩阵。

每一个护符都有自己的魔力值。现在为了测试圣剑,你需要将这些护符分成 A,B两部分。

要求如下:

  1. 圣剑的所有护符,恰好都属于两部分中的一部分。

  2. 每个部分内部的方块之间,可以通过上下左右相互到达,而且每个内部的方块之间互相到达,最多允许拐一次弯。

例如

AAAAA  AAAAA  AAAAA
AABAA  BaAAA  AAABB
ABBBA  BBAAA  AAABB
AABAA  BaAAA  ABBBB
AAAAA  AAAAA  BBBBB   (1)     (2)     (3)      

其中(1)(2)是不允许的分法,(3)是允许的分法。在(2)中,a属于A区域,这两个a元素之间互相到达,没有办法最多只拐一次弯。

现在要问,所有合法的分法中,A区域的极差与B区域的极差 中间较大的一个的 最小值 是多少?

好心而可爱的在一旁默默观察奈芙莲悄悄地告诉你,极差就是区域内最大值减去最小值。

输入输出格式

输入格式:

第一行两个自然数n,mn,mn,m

接下来nnn行,每行mmm个自然数Ai,jA_{i,j}Ai,j​表示权值

输出格式:

一个整数表示答案。

输入输出样例

输入样例#1:

4 4
1 12 6 11
11 4 2 14
10 1 9 20
4 17 13 10
输出样例#1:

11

说明

样例解释

1  12 6        11
11 4 2 14
10 1 9 20
4 17 13 10

分法不唯一,如图是一种合法的分法。左边部分极差12-1=11,右边一块极差20-10=10,所以答案取这两个中较大者11。没有别的分法,可以使答案更小。

数据范围与约定

测试点 n m
#1-2 ≤10\le 10≤10 ≤10\le 10≤10
#3-4 1 ≤2000\le 2000≤2000
#5-7 ≤200\le 200≤200 ≤200\le 200≤200
#8-10 ≤2000\le 2000≤2000 ≤2000\le 2000≤2000

对于所有的权值1≤Ai,j≤1091\le A_{i,j} \le 10^91≤Ai,j​≤109

题解

看到最大最小还是要考虑二分呐。。。虽然本蒟蒻尝试了想二分然而并不知道怎么check
首先我们二分差值
check的思路非常妙,由题我们知道我们选出来的A是在每一行的长度是单调且连续的,由于A和B可以互换,我们不妨设最大极值在A中,那么A这样一个梯状的区域的顶角处于某个角落,我们不妨设为左上角,然后将矩阵做3次旋转就可以考虑到所有情况。

好了现在A的顶点在左上角,我们要判定条件是否成立。
首先最大值和最小值一定不在一起,
我们不妨设最大值在A中,那么我们从第一行开始找到第一个与最大值差值在check范围内的位置p
在第二行不超过p的位置同样找一个这样的边界,
这样子我们就将矩阵划分为了两个区域:
左边区域一定满足条件,因为是我们枚举出来的,那么我们再判断右区域满不满足【与最小值的差值在条件范围内】
就搞定啦~

【get 二分特性 + 矩阵旋转 + 最大值最小值划分思想】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 2017,maxm = 100005,INF = 2000000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
} int n,m,A[4][maxn][maxn],gmax = -INF,gmin = INF; void init(){
n = read();
m = read();
int x = 1,x1 = 1,x2 = n,x3 = m,y = 1,y1 = n,y2 = m,y3 = 1,t;
for (int i = 1; i <= n; i++){
for (int j = 1; j <= m; j++){
t = A[0][x][y++] = A[1][x1++][y1] = A[2][x2][y2--] = A[3][x3--][y3] = read();
if (t > gmax) gmax = t;
if (t < gmin) gmin = t;
}
x++; y = 1;
y1--; x1 = 1;
x2--; y2 = m;
y3++; x3 = m;
}
} int endi[maxn];
bool Check(int u,int d){
if (u & 1) swap(n,m);
endi[0] = m;
for (int i = 1,j; i <= n; i++){
for (j = 1; j <= endi[i - 1]; j++)
if (gmax - A[u][i][j] > d)
break;
endi[i] = j - 1;
}
for (int i = 1; i <= n; i++){
for (int j = endi[i] + 1; j <= m; j++)
if (A[u][i][j] - gmin > d){
if (u & 1) swap(n,m);
return false;
}
}
if (u & 1) swap(n,m);
return true;
} bool check(int d){
if (Check(0,d)) return true;
if (Check(1,d)) return true;
if (Check(2,d)) return true;
if (Check(3,d)) return true;
return false;
} void solve(){
int l = 0,r = gmax - gmin;
while (l < r){
int mid = (l + r) >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
cout<<l<<endl;
} int main()
{
init();
solve();
return 0;
}


洛谷P3933 Chtholly Nota Seniorious 【二分 + 贪心 + 矩阵旋转】的更多相关文章

  1. 洛谷3933 Chtholly Nota Seniorious 二分答案+贪心

    题目链接 题意 给你一个N*M的矩阵 (N,M <=2000)  把他分成两部分 使两部分的极差较大的一个最小  求这个最小值.然后分矩阵的要求是:每个部分内部的方块之间,可以通过上下左右相互到 ...

  2. 【Luogu】P3933 Chtholly Nota Seniorious

    [题意]将n*m矩阵分成两个区域,要求满足一定条件,求两区域内部极差较大值最小.n,m<=2000 [算法]二分 [题解]极差的数值满足单调性,所以考虑二分极差. 对于给定的极差,将所有数值排序 ...

  3. Chtholly Nota Seniorious

    题目背景 大样例下发链接: https://pan.baidu.com/s/1nuVpRS1 密码: sfxg こんなにも.たくさんの幸せをあの人に分けてもらった だから.きっと 今の.私は 谁が何と ...

  4. noip模拟赛 Chtholly Nota Seniorious

    题目背景 大样例下发链接: https://pan.baidu.com/s/1nuVpRS1 密码: sfxg こんなにも.たくさんの幸せをあの人に分けてもらった だから.きっと 今の.私は 谁が何と ...

  5. 洛谷 P2503 [HAOI2006]均分数据 随机化贪心

    洛谷P2503 [HAOI2006]均分数据(随机化贪心) 现在来看这个题就是水题,但模拟赛时想了1个小时贪心,推了一堆结论,最后发现贪心做 不了, 又想了半个小时dp 发现dp好像也做不了,在随机化 ...

  6. LOJ 2555 & 洛谷 P4602 [CTSC2018]混合果汁(二分+主席树)

    LOJ 题目链接 & 洛谷题目链接 题意:商店里有 \(n\) 杯果汁,第 \(i\) 杯果汁有美味度 \(d_i\),单价为 \(p_i\) 元/升.最多可以添加 \(l_i\) 升.有 \ ...

  7. 洛谷P3602 Koishi Loves Segments(贪心,multiset)

    洛谷题目传送门 贪心小水题. 把线段按左端点从小到大排序,限制点也是从小到大排序,然后一起扫一遍. 对于每一个限制点实时维护覆盖它的所有线段,如果超过限制,则贪心地把右端点最大的线段永远删去,不计入答 ...

  8. 洛谷P4155 [SCOI2015]国旗计划(贪心,树形结构,基数排序)

    洛谷题目传送门 \(O(n)\)算法来啦! 复杂度优化的思路是建立在倍增思路的基础上的,看看楼上几位巨佬的描述吧. 首先数组倍长是一样的.倍增法对于快速找到\(j\)满足\(l_j+m\le r_i\ ...

  9. 【题解】洛谷P2577 [ZJOI2005] 午餐(DP+贪心)

    次元传送门:洛谷P2577 思路 首先贪心是必须的 我们能感性地理解出吃饭慢的必须先吃饭(结合一下生活) 因此我们可以先按吃饭时间从大到小排序 然后就能自然地想到用f[i][j][k]表示前i个人在第 ...

随机推荐

  1. 【转】ERROR 2003 (HY000): Can't connect to MySQL server on '192.168.1.165' (113)

    原文转自:http://blog.csdn.net/chengyuqiang/article/details/54285857 1.程序报错: com.mysql.jdbc.exceptions.jd ...

  2. 基于Cocos2d-x-1.0.1的飞机大战游戏开发实例(下)

    在飞机大战游戏开发中遇到的问题和解决方法: 1.在添加菜单时,我要添加一个有背景的菜单,需要在菜单pMenu中添加一个图片精灵,结果编译过了但是运行出错,如下图: 查了很多资料,调试了很长时间,整个人 ...

  3. python-全栈开发-前方高能-内置函数

    python_day_14 13. 前方高能-内置函数 ⼀. 本节主要内容: 1. 内置函数 什么是内置函数? 就是python给你提供的. 拿来直接⽤的函数, 比如print., input等等. ...

  4. python全栈开发- 前⽅⾼能-迭代器

    python_day_12 今日主要内容 1, 函数名的应用,第一类对象 函数名可以像变量一样进行使用 1.赋值 2.作为list元素 3.作为参数 4.作为返回值 2, 闭包 内部函数访问外部函数的 ...

  5. Django——POST请求及Action触发事件

    添加网页login,将类型置为post,并添加action page,也就是之前写好的页面 添加page网页的views函数,要求获取post指令,如果username及password均正确则跳转到 ...

  6. webgl 包围盒子

    包围盒子是鼠标选择物体的一种实现方式,当从相机出发,经过鼠标点形成的射线和物体的包围盒子相交时,就代表物体被选中

  7. java学习笔记-01.对象入门

    1.面向对象编程简称是OOP. 2.继承是通过 extends关键字实现的,接口是通过implements关键字实现的. 3.public:意味着后续的定义任何人均可使用. private:意味着除了 ...

  8. USACO 1.3.3 Calf Flac(Manacher算法)

    Description 据说如果你给无限只母牛和无限台巨型便携式电脑(有非常大的键盘),那么母牛们会制造出世上最棒的回文.你的工作就是去寻找这些牛制造的奇观(最棒的回文). 在寻找回文时不用理睬那些标 ...

  9. Opendarlight Carbon 安装

    写在前面 目前最轻松的一次安装过程,感谢大翔哥的帮助. 安装过程 1.Zip包下载 找到Opendaylight官网,进入下载界面找到Carbon版本并下载. 2.Zip包解压 把这个zip压缩包解压 ...

  10. 如何利用Xshell在Linux下安装jdk

    本文会详细介绍如何在Linux下安装JDK1.8 首先要设置虚拟机的IP地址,不知道如何设置的话可以 翻看我的前一篇博客   http://www.cnblogs.com/xiaoxiaoSMILE/ ...