压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现
压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之SP算法python实现
压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OLS算法python实现
压缩感知重构算法之IRLS算法python实现
SP(subspace pursuit)算法是压缩感知中一种非常重要的贪婪算法,它有较快的计算速度和较好的重构概率,在实际中应用较多。本文给出了SP算法的python和matlab代码,以及完整的仿真过程。
参考文献:Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. Information Theory, IEEE Transactions on, 2009, 55(5): 2230-2249.
SP算法流程:
代码
要利用python实现,电脑必须安装以下程序
- python (本文用的python版本为3.5.1)
- numpy python包(本文用的版本为1.10.4)
- scipy python包(本文用的版本为0.17.0)
- pillow python包(本文用的版本为3.1.1)
另外需要下载lena图片放在和程序同一个目录下面
#coding:utf-8
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为SP算法 ,图像按列进行处理
# 参考文献: W. Dai and O. Milenkovic, “Subspace Pursuit for Compressive
# Sensing Signal Reconstruction,” 2009.
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#导入集成库
import math
# 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包
#读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))#图片大小256*256
#生成高斯随机测量矩阵
sampleRate=0.7 #采样率
Phi=np.random.randn(256*sampleRate,256)
#生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d)
#随机测量
img_cs_1d=np.dot(Phi,im)
#SP算法函数
def cs_sp(y,D):
K=math.floor(y.shape[0]/3)
pos_last=np.array([],dtype=np.int64)
result=np.zeros((256))
product=np.fabs(np.dot(D.T,y))
pos_temp=product.argsort()
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
pos_current=pos_temp[0:K]#初始化索引集 对应初始化步骤1
residual_current=y-np.dot(D[:,pos_current],np.dot(np.linalg.pinv(D[:,pos_current]),y))#初始化残差 对应初始化步骤2
while True: #迭代次数
product=np.fabs(np.dot(D.T,residual_current))
pos_temp=np.argsort(product)
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
pos=np.union1d(pos_current,pos_temp[0:K])#对应步骤1
pos_temp=np.argsort(np.fabs(np.dot(np.linalg.pinv(D[:,pos]),y)))#对应步骤2
pos_temp=pos_temp[::-1]
pos_last=pos_temp[0:K]#对应步骤3
residual_last=y-np.dot(D[:,pos_last],np.dot(np.linalg.pinv(D[:,pos_last]),y))#更新残差 #对应步骤4
if np.linalg.norm(residual_last)>=np.linalg.norm(residual_current): #对应步骤5
pos_last=pos_current
break
residual_current=residual_last
pos_current=pos_last
result[pos_last[0:K]]=np.dot(np.linalg.pinv(D[:,pos_last[0:K]]),y) #对应输出步骤
return result
#重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_sp(img_cs_1d[:,i],Theta_1d) #利用SP算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵
#显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()
欢迎python爱好者加入:学习交流群 667279387
压缩感知重构算法之SP算法python实现的更多相关文章
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之子空间追踪(SP)
SP的提出时间比CoSaMP提出时间稍晚一些,但和压缩采样匹配追踪(CoSaMP)的方法几乎是一样的.SP与CoSaMP主要区别在于“In each iteration, in the SP algo ...
- 浅谈压缩感知(二十四):压缩感知重构算法之子空间追踪(SP)
主要内容: SP的算法流程 SP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 SP与CoSaMP的性能比较 一.SP的算法流程 压缩采样匹配追踪(CoSaMP)与子 ...
- 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...
- 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)
主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...
随机推荐
- python面试题2.1:如何实现栈
本题目摘自<Python程序员面试算法宝典>,我会每天做一道这本书上的题目,并分享出来,统一放在我博客内,收集在一个分类中. 2.1 如何实现栈 [阿里巴巴面试题] 难度系数:⭐⭐⭐ 考察 ...
- PHP判断数组下标有没有存在的方法
PHP判断数组下标有没有存在的方法<pre>if(!empty($token['errcode'])){ print_r($token['errmsg']); exit();}</p ...
- Windows下Apache与PHP的安装与配置
下载Apache Apache的官网(http://httpd.apache.org) 1.把解压后的Apache拷贝到要安装的目标位置.建议拷贝到C盘根目录下,因为这是其默认设置. 2.我选择的是拷 ...
- Java基础:数组的声明,循环,赋值,拷贝。
数组的声明 一般有两种形式的声明: int[] a; int a[]; 这两种声明都没错,但是大多数都使用第一种声明,因为变量名是独立的,不带任何符号. 声明一个数组,并没有将a真正的初始化为一个数组 ...
- logback日志回顾整理--2018年8月8日
几年前使用过logback作为项目的日志框架. 当时觉得这个框架比log4j更加好用. 所以系统的学习了一遍. 后来换了公司, 不再使用logback. 如今, 又有机会使用logback了, 所以, ...
- Django 自定义分页器
为什么要实现分页? 在大部分网站中分页的功能都是必要的,尤其是在后台管理中分页更是不可或缺 分页能带给用户更好的体验,也能减轻服务器的压力 对于分页来说,有许多方法都可以实现 例如把数据全部读取出来在 ...
- ubuntu安装应用日志
1.安装搜狗输入法,去官网下 2.安装vim 3.安装vbox5.16,导入win7(还未成功,报错UUID不匹配),改5.14试试 4.安装微信:http://www.cnblogs.com/Blu ...
- Session,Token,Cookie相关区别
1. 为什么要有session的出现? 答:是由于网络中http协议造成的,因为http本身是无状态协议,这样,无法确定你的本次请求和上次请求是不是你发送的.如果要进行类似论坛登陆相关的操作,就实现不 ...
- Jmeter使用代理录制web
Jmeter有录制功能,录制HTTPs需要增加一个证书配置,录制步骤如下: 1.打开jmeter,添加线程组.线程组右键,逻辑控制器>录制控制器 工作台 右键 非测试元件 >HTTP代理服 ...
- 【阿里巴巴-高德-汽车事业部】【内推】Java技术专家、前端技术专家、C++技术专家(长期招聘)
简历接收邮箱:yx185737@alibaba-inc.com 邮件请备注来自CSDN 一.Java技术专家 职位描述 研究汽车智能化和在线服务前沿技术,从事在线数据服务和车联网服务的设计和研发 负责 ...