压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现
压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之SP算法python实现
压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OLS算法python实现
压缩感知重构算法之IRLS算法python实现
SP(subspace pursuit)算法是压缩感知中一种非常重要的贪婪算法,它有较快的计算速度和较好的重构概率,在实际中应用较多。本文给出了SP算法的python和matlab代码,以及完整的仿真过程。
参考文献:Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. Information Theory, IEEE Transactions on, 2009, 55(5): 2230-2249.
SP算法流程:
代码
要利用python实现,电脑必须安装以下程序
- python (本文用的python版本为3.5.1)
- numpy python包(本文用的版本为1.10.4)
- scipy python包(本文用的版本为0.17.0)
- pillow python包(本文用的版本为3.1.1)
另外需要下载lena图片放在和程序同一个目录下面
#coding:utf-8
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为SP算法 ,图像按列进行处理
# 参考文献: W. Dai and O. Milenkovic, “Subspace Pursuit for Compressive
# Sensing Signal Reconstruction,” 2009.
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#导入集成库
import math
# 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包
#读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))#图片大小256*256
#生成高斯随机测量矩阵
sampleRate=0.7 #采样率
Phi=np.random.randn(256*sampleRate,256)
#生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d)
#随机测量
img_cs_1d=np.dot(Phi,im)
#SP算法函数
def cs_sp(y,D):
K=math.floor(y.shape[0]/3)
pos_last=np.array([],dtype=np.int64)
result=np.zeros((256))
product=np.fabs(np.dot(D.T,y))
pos_temp=product.argsort()
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
pos_current=pos_temp[0:K]#初始化索引集 对应初始化步骤1
residual_current=y-np.dot(D[:,pos_current],np.dot(np.linalg.pinv(D[:,pos_current]),y))#初始化残差 对应初始化步骤2
while True: #迭代次数
product=np.fabs(np.dot(D.T,residual_current))
pos_temp=np.argsort(product)
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
pos=np.union1d(pos_current,pos_temp[0:K])#对应步骤1
pos_temp=np.argsort(np.fabs(np.dot(np.linalg.pinv(D[:,pos]),y)))#对应步骤2
pos_temp=pos_temp[::-1]
pos_last=pos_temp[0:K]#对应步骤3
residual_last=y-np.dot(D[:,pos_last],np.dot(np.linalg.pinv(D[:,pos_last]),y))#更新残差 #对应步骤4
if np.linalg.norm(residual_last)>=np.linalg.norm(residual_current): #对应步骤5
pos_last=pos_current
break
residual_current=residual_last
pos_current=pos_last
result[pos_last[0:K]]=np.dot(np.linalg.pinv(D[:,pos_last[0:K]]),y) #对应输出步骤
return result
#重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_sp(img_cs_1d[:,i],Theta_1d) #利用SP算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵
#显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()
欢迎python爱好者加入:学习交流群 667279387
压缩感知重构算法之SP算法python实现的更多相关文章
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之子空间追踪(SP)
SP的提出时间比CoSaMP提出时间稍晚一些,但和压缩采样匹配追踪(CoSaMP)的方法几乎是一样的.SP与CoSaMP主要区别在于“In each iteration, in the SP algo ...
- 浅谈压缩感知(二十四):压缩感知重构算法之子空间追踪(SP)
主要内容: SP的算法流程 SP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 SP与CoSaMP的性能比较 一.SP的算法流程 压缩采样匹配追踪(CoSaMP)与子 ...
- 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...
- 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)
主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...
随机推荐
- beacon帧字段结构最全总结(三)——VHT字段总结
VHT Capabilities 802.11ac作为IEEE 无线技术的新标准,它借鉴了802.11n的各种优点并进一步优化,除了最明显的高吞吐特点外,不仅可以很好地兼容802.11a/n的设备,同 ...
- (Codeforce)The number of positions
Petr stands in line of n people, but he doesn't know exactly which position he occupies. He can say ...
- suseoj 1209: 独立任务最优调度问题(动态规划)
1209: 独立任务最优调度问题 时间限制: 1 Sec 内存限制: 128 MB提交: 3 解决: 2[提交][状态][讨论版][命题人:liyuansong] 题目描述 用2台处理机A和B处理 ...
- Apache中AllowOverride的详细配置使用
我们通常利用Apache的rewrite模块对URL进行重写,rewrite规则会写在 .htaccess 文件里.但要使 apache 能够正常的读取.htaccess 文件的内容,就必须对.hta ...
- 《JAVA 程序员面试宝典(第四版)》之JAVA程序设计基础概念(1)类型转换
问题主题:类型转换 书页号码:37页 题目: 讨论点:答案不是D,应该是B 理由:看下面在编译器输入的结果 知识扩展:装箱与拆箱, == 与 equals 区别 之前也老是听说什么装箱.拆箱之 ...
- .Net Core 使用NPOI导入数据
一.搭建环境 1.新建ASP.NET Core Web 应用程序 2.选择API 3.引用Swashbuckle.AspNetCore NuGet 包进行安装. Swashbuckle.AspNetC ...
- .NET高级特性-Emit(2.1)字段
在上篇blog写完的几天后,有读者反映写的过于复杂,导致无法有效的进行实践:博主在考虑到园子里程序员水平高低不一致的情况,所以打算放慢脚步,对类的一些内容进行详细的讲解,顺带的会写一些笔者所遇到过的E ...
- C#面向对象--命名空间
一.在C#中,使用命名空间(Namespace)可以帮助控制自定义类型的作用范围,同时对大量的类型进行组织:使用namespace关键字声明命名空间,命名空间可以嵌套使用: namespace MyN ...
- c# 为什么会出现死锁?多线程死锁怎么解决
出现死锁必须满足以下几个条件: 1.互斥条件:该进程拥有的资源,其他进程只能等待其释放. 2.不剥夺条件:该进程拥有的资源只能由它自己来释放. 3.请求和保持条件:请求其他的资源,同时自己拥有的资源又 ...
- mybatis精讲(四)--ObjectFactory
目录 前言 mybatis的ObjectFactory 源码 setProperties create instantiateClass 使用场景 # 加入战队 微信公众号 前言 ObjectFact ...