网络流/费用流


  比较简单的一题,对于每个星球,将它拆成两个点,然后二分图建模:左部结点与S相连,流量为1费用为0;右部结点与T相连,流量为1费用为0;对于每条航道x->y,连边x->y+n,流量为1,费用为w[i]。

  那么瞬移到某个星球呢?直接连S->n+i,容量为1费用为a[i]。

(建图描述的已经比较清晰了,我就不给大家配图了,自己手画一下就行,很简单的)

  因为是最大流,所以每个星球一定都经过了(每个右部结点都流过了),而每个星球都是从花费最少的那条路径过来的!

  这题由于每个星球都必须经过,且有瞬移的存在,所以其实就是一个贪心,找出到达每个点的最小代价即可(这里的到达就走一步……比如星球4可以从星球2过来,那么就光考虑瞬移a[4]和由2过来的航道w[i]这两个权值即可)

 /**************************************************************
Problem: 1927
User: Tunix
Language: C++
Result: Accepted
Time:3148 ms
Memory:5988 kb
****************************************************************/ //BZOJ 1927
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
inline int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,M=,INF=~0u>>;
typedef long long LL;
/******************tamplate*********************/
int a[N],n,m,ans;
struct edge{int from,to,v,c;};
struct Net{
edge E[M];
int head[N],next[M],cnt;
void ins(int x,int y,int z,int c){
E[++cnt]=(edge){x,y,z,c};
next[cnt]=head[x]; head[x]=cnt;
}
void add(int x,int y,int z,int c){
ins(x,y,z,c); ins(y,x,,-c);
}
int from[N],Q[M],d[N],S,T;
bool inq[N],sign;
bool spfa(){
int l=,r=-;
F(i,,T) d[i]=INF;
d[S]=; Q[++r]=S; inq[S]=;
while(l<=r){
int x=Q[l++];
inq[x]=;
for(int i=head[x];i;i=next[i])
if(E[i].v> && d[x]+E[i].c<d[E[i].to]){
d[E[i].to]=d[x]+E[i].c;
from[E[i].to]=i;
if (!inq[E[i].to]){
Q[++r]=E[i].to;
inq[E[i].to]=;
}
}
}
return d[T]!=INF;
}
void mcf(){
int x=INF;
for(int i=from[T];i;i=from[E[i].from])
x=min(x,E[i].v);
for(int i=from[T];i;i=from[E[i].from]){
E[i].v-=x;
E[i^].v+=x;
}
ans+=x*d[T];
}
void init(){
n=getint(); m=getint(); cnt=;
S=; T=n*+;
F(i,,n){
a[i]=getint();
add(S,n+i,,a[i]);
add(S,i,,);
add(n+i,T,,);
}
int x,y,z;
F(i,,m){
x=getint(); y=getint(); z=getint();
if (x>y) swap(x,y);
add(x,y+n,,z);
}
while(spfa()) mcf();
printf("%d\n",ans);
}
}G1;
int main(){
#ifndef ONLINE_JUDGE
freopen("1927.in","r",stdin);
freopen("1927.out","w",stdout);
#endif
G1.init();
return ;
}

【BZOJ】【1927】【SDOI2010】星际竞速的更多相关文章

  1. BZOJ 1927: [Sdoi2010]星际竞速

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2051  Solved: 1263[Submit][Stat ...

  2. BZOJ 1927: [Sdoi2010]星际竞速 费用流

    1927: [Sdoi2010]星际竞速 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  3. bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Statu ...

  4. BZOJ 1927: [Sdoi2010]星际竞速(最小费用最大流)

    拆点,费用流... ----------------------------------------------------------------------------- #include< ...

  5. BZOJ 1927: [Sdoi2010]星际竞速 [上下界费用流]

    1927: [Sdoi2010]星际竞速 题意:一个带权DAG,每个点恰好经过一次,每个点有曲速移动到他的代价,求最小花费 不动脑子直接上上下界费用流过了... s到点连边边权为曲速的代价,一个曲速移 ...

  6. Bzoj 1927: [Sdoi2010]星际竞速(网络流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大 ...

  7. bzoj 1927 [Sdoi2010]星际竞速——网络流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1927 每个点拆点保证只经过一次. 主要是如果经过了这个点,这个点应该向汇点流过去表示经过了它 ...

  8. BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)

    题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...

  9. bzoj 1927 [Sdoi2010]星际竞速【最小费用最大流】

    果然还是不会建图- 设\( i \)到\( j \)有通路,代价为\( w[i][j] \),瞬移到i代价为\( a[i] \),瞬移到i代价为\( a[j] \),逗号前是流量. 因为每个点只能经过 ...

  10. BZOJ 1927: [Sdoi2010]星际竞速(费用流)

    传送门 解题思路 仿照最小路径覆盖问题,用费用流解决此题.最小路径覆盖问题是拆点连边后用\(n-\)最大匹配,这里的话也是将每个点拆点,源点向入点连流量为\(1\),费用为\(0\)的边,向出点连流量 ...

随机推荐

  1. Wim技术之Wim文件的制作

    背景:操作的镜像文件为win8.1 update的ISO里的Wim文件 1.使用如下命令将支持WimBoot的instal.Wim文件转换成可以支持wimboot启动的映像文件 Dism /Expor ...

  2. html5的自定义data-*属性和jquery的data()方法的使用示例

    人们总喜欢往HTML标签上添加自定义属性来存储和操作数据. 但这样做的问题是,你不知道将来会不会有其它脚本把你的自定义属性给重置掉,此外,你这样做也会导致html语法上不符合Html规范,以及一些其它 ...

  3. HTML 5中的文件处理之FileAPI(转载)

    原文地址:http://developer.51cto.com/art/201202/319435.htm 在众多HTML5规范中,有一部分规范是跟文件处理有关的,在早期的浏览器技术中,处理小量字符串 ...

  4. 《HTML5与CSS3基础教程》学习笔记 ——Three Day

    第十一章 1.  box-sizing:border-box(让宽度和高度包含内边距和边框) 2.  clear让后面的元素显示在浮动元素的后面 3.  z-index只对只对绝对.固定.相对定位的元 ...

  5. 在Windows Phone中使用HTML编程

    在开发Windows Phone的项目中,需求中有几个页面是要用表格来布局的(效果图如下),由于Grid中有的边线是虚的,而且没有边线,果断放弃了,用了border将表格的线加上去了.于是在有表格布局 ...

  6. gcc常用选项

    gcc选项:    -c         只编译,不链接成为可执行文件,编译器只是由输入的.c等源代码文件生成.o为后缀的目标文件,通常用于编译不包含主程序的子程序文件.    -std=     指 ...

  7. WInform启动另一个项目传值

    背景:从A项目中登陆后,跳转到B项目的某个页面(B不再登陆). A项目启动进程: public Form1() { InitializeComponent(); } #region 调用进程 [Dll ...

  8. js 鼠标事件的抓取代码

    js 鼠标事件的抓取代码,分享给大家. 1.通过ele.setCapture();设置鼠标事件的抓取. 2,应用可以通过单.双击文字来获取时间. <html> <head> & ...

  9. IOC学习

    控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心. 控制反转一般分为两种类型,依赖注入 ...

  10. selenium-python iframe用法

    易迅的登录方法,因为页面有很多iframe的内置框架,需要先逐级定位到登录元素所在的iframe才行 使用方法switch_to_frame('id-name') from selenium impo ...