深度学习面试题14:Dropout(随机失活)
目录
卷积层的dropout
全连接层的dropout
Dropout的反向传播
Dropout的反向传播举例
参考资料
在训练过程中,Dropout会让输出中的每个值以概率keep_prob变为原来的1/keep_prob倍,以概率1-keep_prob变为0。也就是在每一轮的训练中让一些神经元随机失活,从而让每一个神经元都有机会得到更高效的学习,会让网络更加健壮,减小过拟合。
在预测过程中,不再随机失活,也不在扩大神经元的输出。
|
卷积层的dropout |
举例:以一个2*4的二维张量为例,参数keep_prob=0.5,其过程如下:

|
全连接层的dropout |
Dropout处理一般用在全连接神经网络的全连接层或者卷积网络后面的全连接层。
举例:以全连接网络的某一层为例,参数keep_prob=0.5,每一轮训练对隐藏层的输出做dropout,其过程如下:

隐藏层的激活函数为σ(x)=x
|
Dropout的反向传播 |
以一个回归案例为例

其中z2神经元会失活,通过如下图的链式法则发现,此轮更新过程中,与失活神经元相连的边上的权重都不会被训练,因为他们的偏导数都=0.

|
Dropout的反向传播举例 |
举例:dropout的概率p=0.5,激活函数为σ(x)=x,网络结构如下:

假设某样本x的值是3,标签是0.5,训练一个回归模型,因为有dropout的存在,会出现不同的更新情况,下面演示使用样本x反复训练网络,更新网络的过程:
第一轮(假设dropout(z)=2z):

第二轮(假设dropout(z)=0):

第三轮(假设dropout(z)=2z):

|
参考资料 |
《图解深度学习与神经网络:从张量到TensorFlow实现》_张平
深度学习面试题14:Dropout(随机失活)的更多相关文章
- 深度学习面试题13:AlexNet(1000类图像分类)
目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是 ...
- 深度学习面试题29:GoogLeNet(Inception V3)
目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深 ...
- 深度学习面试题27:非对称卷积(Asymmetric Convolutions)
目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减 ...
- 深度学习面试题26:GoogLeNet(Inception V2)
目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separab ...
- 深度学习面试题20:GoogLeNet(Inception V1)
目录 简介 网络结构 对应代码 网络说明 参考资料 简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名.VGG获得了第二 ...
- 深度学习面试题17:VGGNet(1000类图像分类)
目录 VGGNet网络结构 论文中还讨论了其他结构 参考资料 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的 ...
- 深度学习面试题12:LeNet(手写数字识别)
目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起 ...
- 深度学习面试题25:分离卷积(separable卷积)
目录 举例 单个张量与多个卷积核的分离卷积 参考资料 举例 分离卷积就是先在深度上分别卷积,然后再进行卷积,对应代码为: import tensorflow as tf # [batch, in_he ...
- 深度学习面试题24:在每个深度上分别卷积(depthwise卷积)
目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于c ...
随机推荐
- AI人脸识别SDK接入 — 参数优化篇(虹软)
引言 使用了虹软公司免费的人脸识别算法,感觉还是很不错的,当然,如果是初次接触的话会对一些接口的参数有些疑问的.这里分享一下我对一些参数的验证结果(这里以windows版本为例,linux.andro ...
- Android查看应用方法数
当一个项目快速迭代时,难免引进各种依赖,从而导致单个apk超过65k的限制.如何查询apk的方法数也是每个Android Developer必备技能. 我使用的是 dex-method-counts ...
- ArrayList集合实现RandomAccess接口有何作用?为何LinkedList集合却没实现这接口
详见:https://blog.csdn.net/weixin_39148512/article/details/79234817 众所周知,在List集合中,我们经常会用到ArrayList以及Li ...
- 安装xadmin模板依赖
### 安装xadmin模板依赖sudo pip3 install django-crispy-forms django-formtools django-import-export django-r ...
- Python学习日记(十二) 匿名函数
匿名函数: 未解决一些简单的需求而设计的函数 语法: func = lambda x : x**2 func:函数名 lambda:类似def的关键字 x:参数 x**2:返回值表达式 适用内置函数: ...
- MySQL Replication--双主结构优缺点
双主架构图 双主架构实现原理当从库IO线程接受到主库传递来的二进制日志(Binlog)并将之保存为从库的中继日志(relay log),然后从库SQL线程将中继日志(relay log)的事件重做到从 ...
- linux系统多网卡热备实现高并发负载均衡
#nmcli实现bonding #先停止NetworkManagerservice NetworkManager stop chkconfig NetworkManager off //开机自启动 ...
- 生成1~n的排列(模板),生成可重集的排列(对应紫书P184, P185)
生成1~n的排列: #include<iostream> using namespace std; void print_permutation(int n, int *A, int cu ...
- Effective C++读书笔记(转)
第一部分 让自己习惯C++ 条款01:视C++为一个语言联邦 一.要点 ■ c++高效编程守则视状况而变化,取决于你使用c++的哪一部分. 二.扩展 将c++视为一个由相关语言组成的联邦而非单一语言会 ...
- jsp+ ueditor word粘贴上传
最近公司做项目需要实现一个功能,在网页富文本编辑器中实现粘贴Word图文的功能. 我们在网站中使用的Web编辑器比较多,都是根据用户需求来选择的.目前还没有固定哪一个编辑器 有时候用的是UEditor ...