目录

  卷积层的dropout

  全连接层的dropout

  Dropout的反向传播

  Dropout的反向传播举例

  参考资料


在训练过程中,Dropout会让输出中的每个值以概率keep_prob变为原来的1/keep_prob倍,以概率1-keep_prob变为0。也就是在每一轮的训练中让一些神经元随机失活,从而让每一个神经元都有机会得到更高效的学习,会让网络更加健壮,减小过拟合。

在预测过程中,不再随机失活,也不在扩大神经元的输出。

卷积层的dropout

举例:以一个2*4的二维张量为例,参数keep_prob=0.5,其过程如下:

返回目录

全连接层的dropout

Dropout处理一般用在全连接神经网络的全连接层或者卷积网络后面的全连接层。

举例:以全连接网络的某一层为例,参数keep_prob=0.5,每一轮训练对隐藏层的输出做dropout,其过程如下:

隐藏层的激活函数为σ(x)=x

返回目录

Dropout的反向传播

以一个回归案例为例

其中z2神经元会失活,通过如下图的链式法则发现,此轮更新过程中,与失活神经元相连的边上的权重都不会被训练,因为他们的偏导数都=0.

返回目录

Dropout的反向传播举例

举例:dropout的概率p=0.5,激活函数为σ(x)=x,网络结构如下:

假设某样本x的值是3,标签是0.5,训练一个回归模型,因为有dropout的存在,会出现不同的更新情况,下面演示使用样本x反复训练网络,更新网络的过程:

第一轮(假设dropout(z)=2z):

第二轮(假设dropout(z)=0):

第三轮(假设dropout(z)=2z):

返回目录

参考资料

《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

返回目录

深度学习面试题14:Dropout(随机失活)的更多相关文章

  1. 深度学习面试题13:AlexNet(1000类图像分类)

    目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是 ...

  2. 深度学习面试题29:GoogLeNet(Inception V3)

    目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深 ...

  3. 深度学习面试题27:非对称卷积(Asymmetric Convolutions)

    目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减 ...

  4. 深度学习面试题26:GoogLeNet(Inception V2)

    目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separab ...

  5. 深度学习面试题20:GoogLeNet(Inception V1)

    目录 简介 网络结构 对应代码 网络说明 参考资料 简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名.VGG获得了第二 ...

  6. 深度学习面试题17:VGGNet(1000类图像分类)

    目录 VGGNet网络结构 论文中还讨论了其他结构 参考资料 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的 ...

  7. 深度学习面试题12:LeNet(手写数字识别)

    目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起 ...

  8. 深度学习面试题25:分离卷积(separable卷积)

    目录 举例 单个张量与多个卷积核的分离卷积 参考资料 举例 分离卷积就是先在深度上分别卷积,然后再进行卷积,对应代码为: import tensorflow as tf # [batch, in_he ...

  9. 深度学习面试题24:在每个深度上分别卷积(depthwise卷积)

    目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于c ...

随机推荐

  1. Lerp

    Lerp,就是返回两个值之间的插值,一般有三个参数.第一个参数为初始值,第二个参数为最终值,插值为0~1d的一个浮点数值,为0时为初始值,1时为最终值,为0到1之间的数值时返回一个混合数值.若第三个参 ...

  2. CentOS 6.5本地yum源、局域网离线yum仓库(断网情况下轻松安装各种依赖包)

    在工作中, 公司的服务器大部分都禁止连接外网的,初始化系统,测试某些产品时,往往缺一些软件或依赖包,一个个上传到机器,如此浪费时间,浪费金钱,en...yum能够自动查找并解决rpm包之间的依赖关系, ...

  3. tp5 隐藏index.php

    原文——>链接 官方默认的.htaccess文件 <IfModule mod_rewrite.c> Options +FollowSymlinks -Multiviews Rewri ...

  4. Python_变量作用域

    1.变量作用域: def get_apple(name,*b): global totalCount totalCount=0 for num in b: print('............... ...

  5. 使用Cloudera Manager搭建Hive服务

      使用Cloudera Manager搭建Hive服务 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.安装Hive环境 1>.进入CM服务安装向导 2>.选择需要 ...

  6. jmeter性能测试监控

    Jmeter监控服务器资源配置如下: 1.进入https://jmeter-plugins.org/downloads/all/下载plugins-manager.jar,放置到jmeter安装目录/ ...

  7. 一个Python小白如何快速完成爬虫

    很人或多或少都听说过python爬虫,但不知道如何通过python爬虫来爬取自己想要的内容,今天我就给大家说一个爬虫教程来实现自己第一次python爬虫. 环境搭建 既然用python,那么自然少不了 ...

  8. 《The One!团队》第八次作业:ALPHA冲刺(四)

    项目 内容 作业所属课程 所属课程 作业要求 作业要求 团队名称 < The One !> 作业学习目标 (1)掌握软件测试基础技术.(2)学习迭代式增量软件开发过程(Scrum) 第四天 ...

  9. used to do 与be used to doing /n.

    1.used to do:表示过去的习惯性动作,过去如此,现在不再这样了.常译作“过去常常”.(过去时+动词不定式) He used to play basketball when he was yo ...

  10. 【CSP-S 2019】【洛谷P5665】划分【单调队列dp】

    前言 \(csp\)时发现自己做过类似这道题的题目 : P4954 [USACO09Open] Tower of Hay 干草塔 然后回忆了差不多\(15min\)才想出来... 然后就敲了\(88p ...