http://www.lydsy.com/JudgeOnline/problem.php?id=1834

我又思考人生了T_T,nd的数组开小了,一直wa,调了一个小时才发现啊!!!!!我一直以为我的isap错了T_T,可是完全没错啊!!!!

这题其实第一个问很简单,跑一次最大流即可。第二个问就是在跑完最大流的残量网络上每条边都扩充容量为oo,费用为边的费用,然后设个超级源连一条容量为k的边到点1,再跑一次费用流即可。

理由很简单,自己想,我就不说了。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=1010, M=2000000, oo=~0u>>1;
int ihead[N], cnt=1, cur[N], gap[N], d[N], p[N], n, m, k, vis[N], q[N], front, tail, nd[M][3];
struct ED { int from, to, cap, w, next; } e[M];
inline void add(const int &u, const int &v, const int &c, const int &w) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[cnt].cap=c; e[cnt].w=w;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v; e[cnt].cap=0; e[cnt].w=-w;
}
int isap(const int &s, const int &t, const int &n) {
for1(i, 0, n) cur[i]=ihead[i];
int ret=0, i, f, u=s;
gap[0]=n;
while(d[s]<n) {
for(i=cur[u]; i; i=e[i].next) if(e[i].cap && d[u]==d[e[i].to]+1) break;
if(i) {
p[e[i].to]=cur[u]=i; u=e[i].to;
if(u==t) {
for(f=oo; u!=s; u=e[p[u]].from) f=min(f, e[p[u]].cap);
for(u=t; u!=s; u=e[p[u]].from) e[p[u]].cap-=f, e[p[u]^1].cap+=f;
ret+=f;
}
}
else {
if(! (--gap[d[u]]) ) break;
d[u]=n; cur[u]=ihead[u];
for(i=ihead[u]; i; i=e[i].next) if(e[i].cap && d[u]>d[e[i].to]+1) d[u]=d[e[i].to]+1;
++gap[d[u]];
if(u!=s) u=e[p[u]].from;
}
}
return ret;
}
inline const bool spfa(const int &s, const int &t) {
for1(i, s, t) d[i]=1000000000, vis[i]=0;
vis[s]=1; d[s]=front=tail=0; q[tail++]=s;
int u, v, i;
while(front!=tail) {
u=q[front++]; if(front==N) front=0;
for(i=ihead[u]; i; i=e[i].next) if(e[i].cap && d[v=e[i].to]>d[u]+e[i].w) {
d[v]=d[u]+e[i].w; p[v]=i;
if(!vis[v]) {
vis[v]=1, q[tail++]=v;
if(tail==N) tail=0;
}
}
vis[u]=0;
}
return d[t]!=1000000000;
}
int mcf(const int &s, const int &t) {
int ret=0, f, u;
while(spfa(s, t)) {
for(f=oo, u=t; u!=s; u=e[p[u]].from) f=min(f, e[p[u]].cap);
for(u=t; u!=s; u=e[p[u]].from) e[p[u]].cap-=f, e[p[u]^1].cap+=f;
ret+=d[t]*f;
}
return ret;
}
int main() {
read(n); read(m); read(k);
int s=1, t=n, u, v, c;
for1(i, 1, m) {
read(u); read(v); read(c); read(nd[i][2]);
add(u, v, c, 0);
nd[i][0]=u; nd[i][1]=v;
}
printf("%d ", isap(s, t, t+1));
for1(i, 1, m) add(nd[i][0], nd[i][1], oo, nd[i][2]);
s=0; add(s, 1, k, 0);
print(mcf(s, t));
return 0;
}

Description

给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求: 1、 在不扩容的情况下,1到N的最大流; 2、 将1到N的最大流增加K所需的最小扩容费用。

Input

输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。

Output

输出文件一行包含两个整数,分别表示问题1和问题2的答案。

Sample Input

5 8 2
1 2 5 8
2 5 9 9
5 1 6 2
5 1 1 8
1 2 8 7
2 5 4 9
1 2 1 1
1 4 2 1

Sample Output

13 19
30%的数据中,N<=100
100%的数据中,N<=1000,M<=5000,K<=10

HINT

Source

【BZOJ】1834: [ZJOI2010]network 网络扩容(最大流+费用流)的更多相关文章

  1. BZOJ 1834: [ZJOI2010]network 网络扩容(网络流+费用流)

    一看就知道是模板题= = ,不说什么了= = PS:回去搞期末了,暑假再来刷题了 CODE: #include<cstdio> #include<iostream> #incl ...

  2. BZOJ 1834: [ZJOI2010]network 网络扩容 最小费用流_最大流_残量网络

    对于第一问,跑一遍最大流即可. 对于第二问,在残量网络上的两点间建立边 <u,v>,容量为无限大,费用为扩充费用. 跑一遍最小费用流即可. Code: #include <vecto ...

  3. BZOJ 1834 ZJOI2010 network 网络扩展 Dinic+EK费用流

    标题效果:给定一个n积分m无向图边,每一方有一个扩展的成本c.代表扩张1费用的交通,寻求最大流量和扩大的最大流量k最小成本 第一问直接运行的最大流量 第二个问题将是连接到一个流的末端每个边缘的起点是正 ...

  4. BZOJ 1834: [ZJOI2010]network 网络扩容(最大流+最小费用最大流)

    第一问直接跑最大流.然后将所有边再加一次,费用为扩容费用,容量为k,再从一个超级源点连一条容量为k,费用为0的边到原源点,从原汇点连一条同样的边到超级汇点,然  后跑最小费用最大流就OK了. ---- ...

  5. bzoj 1834: [ZJOI2010]network 网络扩容 -- 最大流+费用流

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Description 给定一张有向图,每条边都有一个容量C和一 ...

  6. BZOJ 1834 [ZJOI2010]network 网络扩容(费用流)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1834 [题目大意] 给定一张有向图,每条边都有一个容量C和一个扩容费用W. 这里扩容费 ...

  7. bzoj 1834: [ZJOI2010]network 网络扩容【最大流+最小费用最大流】

    第一问直接跑最大流即可.建图的时候按照费用流建,费用为0. 对于第二问,在第一问dinic剩下的残量网络上建图,对原图的每条边(i,j),建(i,j,inf,cij),表示可以用c的花费增广这条路.然 ...

  8. bzoj 1834 [ZJOI2010]network 网络扩容(MCMF)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1834 [题意] 给定一个有向图,每条边有容量C,扩容费用W,问最大流和使容量增加K的最 ...

  9. bzoj 1834: [ZJOI2010]network 网络扩容

    #include<cstdio> #include<iostream> #include<cstring> #define M 100000 #define inf ...

  10. 【BZOJ】1834 [ZJOI2010]network 网络扩容

    [算法]网络流-最大流+最小费用最大流(费用流) [题解] 第一问跑最大流. 第二问: 原始边相当于费用为0的边,再原图(跑过最大流的图)基础上添加带费用的边,容量为k(相当于inf). 第一问最大流 ...

随机推荐

  1. Tornaod框架

    Tornado 是 FriendFeed 使用的可扩展的非阻塞式 web 服务器及其相关工具的开源版本.这个 Web 框架看起来有些像web.py 或者 Google 的 webapp,不过为了能有效 ...

  2. 用sed删除空行

    用sed删除空行 我的代码如下:class Song def initialize(name)        @name = name    end def tell        puts @nam ...

  3. spring3.2.8+quartz2.2.0(比较全,对比quartz1.x的配置)

    spring3.2.8 + quartz2.2.0报错: java.lang.IncompatibleClassChangeError: class org.springframework.sched ...

  4. Android Studio中的Module,Facet

    详细内容请参看 http://www.jetbrains.com/idea/webhelp/facet.html 以及 http://www.jetbrains.com/idea/webhelp/an ...

  5. mybatis存入数据库后没有时分秒时间不全只有年月日

    对于Ibatis操作Date/Time/DateTime,总结如下: 将pojo的属性类型设置为java.sql.Date(或java.sql.Time, java.sql.Timestamp),此时 ...

  6. LightOJ 1234 Harmonic Number (打表)

    Harmonic Number Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submi ...

  7. Android涉及到的设计模式

    转载地址:http://blog.csdn.net/dengshengjin2234/article/details/8502097 1.适配器模式:ListView或GridView的Adapter ...

  8. .pro配置选项

    在Qt Creator的项目中添加头文件和库   在Qt Creator中的工程中,工程通过.pro文件管理. 额外需要连接的连接库 unix:LIBS += -L your_lib_path -ly ...

  9. C#开发微信公众平台-就这么简单(附Demo)(转载)

    转载地址:http://www.cnblogs.com/xishuai/p/3625859.html 写在前面 服务号和订阅号 URL配置 创建菜单 查询.删除菜单 接受消息 发送消息(图文.菜单事件 ...

  10. ytu 1301:Excel地址转换(水题,进制转换)

    Excel地址转换 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 41  Solved: 11[Submit][Status][Web Board] D ...