题面

概率生成函数

对于菜鸡博主来说好难啊

其一般形式为$F(x)=\sum\limits_{i=0}^∞[x==i]x_i$,第i项的系数表示离散变量x取值为i的概率

一般的两个性质:$F(1)=1,E(x)=F'(1)$

这里用$F(x)$表示结束时的串长的概率生成函数,$G(x)$表示到长度到达...而串未结束的概率生成函数,字符串长为len,那么有:

①$F(x)+G(x)=x*G(x)+1$,含义是长度达到x的概率:左边就是字面意思,右边$x*G(x)$表示x-1时未结束的概率,然后加上放的一次

②$\frac{1}{m}^{len}*G(x)=\sum\limits_{i=1}^{len} isb[i]*\frac{1}{m}^{len-i}*F(x)$,其中$isb_i$表示i是否是一个border,整个式子含义是字符串的结束:左边就是在一个没结束的串左边恰好补上所需要的len个字母,右边表示可能正好补了一个border,然后就也结束了

然后开始倒腾这两个式子,我们的目标是捣腾出$F'(1)$,也就是$E(x)$,而直接对①求导就可以得到$F'(x)$与$G(x)$的关系:

$F'(x)-G'(x)=G'(x)*x+G(x)$

$F'(1)=G(1)$

然后直接把$F(1)=1$扔进第二个式子里

$G(1)=\sum\limits_{i=0}^n isb_i m^i$

就是这样

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int T,p,n,pos,ans,num[N],nxt[N],pw[N];
int main()
{
scanf("%d",&p),pw[]=;
for(int i=;i<=;i++)
pw[i]=pw[i-]*p%mod;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&num[i]);
for(int i=,o=;i<n;i++)
{
while(o&&num[o]!=num[i]) o=nxt[o];
nxt[i+]=(num[o]==num[i])?++o:;
}
pos=n,ans=;
while(pos) ans=(ans+pw[pos])%mod,pos=nxt[pos];
printf("%04d\n",ans);
}
return ;
}

解题:CTSC 2006 歌唱王国的更多相关文章

  1. 【BZOJ1152】歌唱王国(生成函数,KMP)

    [BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{ ...

  2. [CTSC2006]歌唱王国

    [CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...

  3. bzoi1152 [CTSC2006]歌唱王国Singleland

    [CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整 ...

  4. 【题解】歌唱王国(概率生成函数+KMP)+伦讲的求方差

    [题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不 ...

  5. P4548-[CTSC2006]歌唱王国【概率生成函数,KMP】

    正题 题目链接:https://www.luogu.com.cn/problem/P4548 题目大意 \(t\)次询问,给出一个长度为\(m\)的串\(S\)和一个空串\(T\),每次在\(T\)后 ...

  6. 【BZOJ】1152: [CTSC2006]歌唱王国Singleland

    题解 读错题了,是最后留下一个牛人首长歌颂他,和其他人没有关系,t就相当于数据组数 结论题,具体可看 https://www.zhihu.com/question/59895916/answer/19 ...

  7. 洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)

    题面 传送门 给定一个长度为\(L\)的序列\(A\).然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\), ...

  8. Luogu4548 CTSC2006 歌唱王国 概率生成函数、哈希

    传送门 orz ymd 考虑构造生成函数:设\(F(x) = \sum\limits_{i=0}^\infty f_ix^i\),其中\(f_i\)表示答案为\(i\)的概率:又设\(G(x) = \ ...

  9. luogu P4548 [CTSC2006]歌唱王国

    传送门 这题\(\mathrm{YMD}\)去年就讲了,然而我今年才做(捂脸) 考虑生成函数,设\(f_i\)表示最终串长为\(i\)的概率,其概率生成函数为\(F(x)=\sum f_ix^i\), ...

随机推荐

  1. 【转载】WINAPI宏

    原文:http://blog.sina.com.cn/s/blog_3f27dee60100qi4j.html 一直搞不懂为什么在函数前面加上WINAPI.CALLBACK等是什么意思 又不是返回值 ...

  2. 微信小程序之缓存——不同页面传递数据

    1. 添加缓存 单个密钥允许存储的最大数据长度为1MB,所有数据存储上限为10MB. // 存储信息到storage // 异步存储 set() { wx.setStorage({ key: 'use ...

  3. 重置Oracle配置

    经常被ORACLE坑,作为一个只需要开发时候连连ORACLE的程序员,在经历了一次又一次的折腾之后,决定还是把这些琐碎的事情写下来. 经常在虚拟机中使用ORACLE,ORACLE的网络配置有一些变化就 ...

  4. React半科普文

    React半科普文 什么是React getting started 文件分离 Server端编译 定义一个组件 使用property 组件嵌套 组件更新 Virtual DOM react nati ...

  5. 计算机基础知识 一 Basic knowledge of computers One

    计算机硬件由CPU(Central Processing Unit).存储器.输入设备.输出设备组成. CPU通常由控制单元(控制器)和算数逻辑单元(运算器)组成. 运算器:负责进行算数运算和逻辑运算 ...

  6. jmeter-如何在JDBC Request中添加多条语句执行

    1.JDBC Connection Configuration中配置Database URL时在URL后面添加  ?allowMultiQueries=true 2.JDBC Request中添加语句 ...

  7. jupyter notebook 更改工作环境和浏览器

    转载自:https://blog.csdn.net/u011141114/article/details/78556227 1 修改默认目录 最近刚刚开始学习Python,比较好的一个IDE就是jup ...

  8. 机器学习初入门04 – Seaborn(持续更新)

    Seaborn库可以说是在matplotlib库上的一个封装,它给我们提供了非常丰富的模板 一.整体布局风格设置 import seaborn as sns import numpy as np im ...

  9. Linux DDos防御

    今天要说的就是一款能够自动屏蔽DDOS攻击者IP的软件:DDoS deflate. DDoS deflate介绍 DDoS deflate是一款免费的用来防御和减轻DDoS攻击的脚本.它通过netst ...

  10. sql注入语句整理

    1.判断有无注入点; and 1=1 and 1=2 2.猜表一般的表的名称无非是admin adminuser user pass password 等..and 0<>(select ...