Luogu2257 YY的GCD/BZOJ2818 Gcd加强版(莫比乌斯反演+线性筛)
一通套路之后得到
求出中间那个函数的前缀和的话就可以整除分块了。
暴力求的话复杂度其实很优秀了,大约在n~nlogn之间。
不过可以线性筛做到严格线性。考虑其最小质因子,如果是平方因子那么只有其有贡献,否则由于多了一个质因子,将函数值取反并加上该质因子贡献。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10000010
int T,n,m,prime[N],mobius[N],sum[N],cnt=;
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2818.in","r",stdin);
freopen("bzoj2818.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
//T=read();
flag[]=;mobius[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,mobius[i]=-,sum[i]=;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) {sum[prime[j]*i]=mobius[i];break;}
else sum[prime[j]*i]=mobius[i]-sum[i],mobius[prime[j]*i]=-mobius[i];
}
}
for (int i=;i<=N-;i++) sum[i]+=sum[i-];
//while (T--)
//{
n=read();//m=read();
long long ans=;
for (int i=;i<=n;i++)
{
int t=n/(n/i);
ans+=1ll*(sum[t]-sum[i-])*(n/i)*(n/i);
i=t;
}
/*for (int i=1;i<=min(n,m);i++)
{
int t=min(n/(n/i),m/(m/i));
ans+=1ll*(sum[t]-sum[i-1])*(n/i)*(m/i);
i=t;
}*/
printf(LL,ans);
//}
return ;
}
Luogu2257 YY的GCD/BZOJ2818 Gcd加强版(莫比乌斯反演+线性筛)的更多相关文章
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数
LINK:简单题 以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西. 这里写一个实现比较精细了. 最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x| ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】
看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...
随机推荐
- Mac 下搭建服务器
1.开启服务器 Apache. sudo apachectl -k start 打开浏览器,在地址栏输入 localhost,如果出现 It works! 那么第一步已经成功了,如果没成功---出门左 ...
- iOS进阶学习笔记
熟练掌握C/C++/Objective-C/Swift语言: 熟悉Cocoa Touch(Foundation,UIKit).Objective-C中block,gcd,NSOperation等: 熟 ...
- Android Notification的使用 - z
http://blog.csdn.net/new_one_object/article/details/55511253 另,博主其它文章也很好
- 20155238 2016-2017-2 《JAVA程序设计》第八周学习总结
教材学习内容总结 第十四章 NIO NIO使用频道(Channel)来衔接数据节点,处理数据时,NIO可以让你设定缓冲区(Buffer)容量, 在缓冲区对感兴趣的数据区块进行标记,对于这些标记,提供了 ...
- 20155304《网络对抗》Exp4 恶意代码分析
20155304<网络对抗>Exp4 恶意代码分析 实践内容 1.系统运行监控 1.1使用schtasks指令监控系统运行 我们在C盘根目录下建立一个netstatlog.bat的文本文件 ...
- 蓝牙disable流程简述
蓝牙关闭的流程比打开流程要简单,主要就是一些profile的断连以及协议栈相关结构的释放. 这里简单说一下其流程,就直接从协议栈的disable的接口说起了. static int disable(v ...
- 使用 restTemplate 实现get/post 请求
get 请求(这里是在 idea 的 test包中,所以需要直接 new RestTemplate() ) 即:RestTemplate restTemplate = new RestTemplate ...
- python常用算法实现
排序是计算机语言需要实现的基本算法之一,有序的数据结构会带来效率上的极大提升. 1.插入排序 插入排序默认当前被插入的序列是有序的,新元素插入到应该插入的位置,使得新序列仍然有序. def inser ...
- 一个Python开源项目-哈勃沙箱源码剖析(下)
前言 在上一篇中,我们讲解了哈勃沙箱的技术点,详细分析了静态检测和动态检测的流程.本篇接着对动态检测的关键技术点进行分析,包括strace,sysdig,volatility.volatility的介 ...
- Jmeter(十二)_打印时间戳
Jmeter中提供了一种函数,可以打印时间戳,如下图 年: yyyy 月:MM 日:dd 时: HH 分: mm 秒:ss 关于时间戳的格式,可以自由组合定义,这里我写成这样 yyyy-MM-dd H ...