题目链接:LightOJ 1418

Problem Description

I have bought an island where I want to plant trees in rows and columns. So, the trees will form a rectangular grid and each of them can be thought of having integer coordinates by taking a suitable grid point as the origin.

But, the problem is that the island itself is not rectangular. So, I have identified a simple polygonal area inside the island with vertices on the grid points and have decided to plant trees on grid points lying strictly inside the polygon.

Figure: A sample of my island

For example, in the above figure, the green circles form the polygon, and the blue circles show the position of the trees.

Now, I seek your help for calculating the number of trees that can be planted on my island.

Input

Input starts with an integer \(T (≤ 100)\), denoting the number of test cases.

Each case starts with a line containing an integer \(N (3 ≤ N ≤ 10000)\) denoting the number of vertices of the polygon.

Each of the next \(N\) lines contains two integers \(x_i y_i (-10^6 ≤ x_i, y_i ≤ 10^6)\) denoting the co-ordinate of a vertex. The vertices will be given in clockwise or anti-clockwise order. And they will form a simple polygon.

Output

For each case, print the case number and the total number of trees that can be planted inside the polygon.

Sample Input

1

9

1 2

2 1

4 1

4 3

6 2

6 4

4 5

1 5

2 3

Sample Output

Case 1: 8

Note

Dataset is huge, use faster I/O methods.

Solution

题意:

给定一个多边形,顶点都在格点上,求多边形内部的格点个数。

思路

Pick 定理 裸题。

#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10; inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} class Point {
public:
ll x, y;
Point(ll x = 0, ll y = 0) : x(x), y(y) {}
void input() {
scanf("%lld%lld", &x, &y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
ll cross(const Point a) {
return x * a.y - y * a.x;
}
}; Point p[maxn]; ll gcd(ll a, ll b) {
return b == 0? a: gcd(b, a % b);
} int main() {
int T;
scanf("%d", &T);
for(int _ = 1; _ <= T; ++_) {
int n;
scanf("%d", &n);
ll on = 0;
ll s = 0;
for(int i = 0; i < n; ++i) {
p[i].input();
}
p[n] = p[0];
for(int i = 0; i < n; ++i) {
s += (p[i + 1] - p[0]).cross(p[i] - p[0]);
on += gcd(abs(p[i].x - p[i + 1].x), abs(p[i].y - p[i + 1].y));
}
s = abs(s);
ll in = s / 2 - on / 2 + 1;
printf("Case %d: ", _);
printf("%lld\n", in);
}
return 0;
}

LightOJ 1418 Trees on My Island (Pick定理)的更多相关文章

  1. UVa 10088 - Trees on My Island (pick定理)

    样例: 输入:123 16 39 28 49 69 98 96 55 84 43 51 3121000 10002000 10004000 20006000 10008000 30008000 800 ...

  2. UVa 10088 (Pick定理) Trees on My Island

    这种1A的感觉真好 #include <cstdio> #include <vector> #include <cmath> using namespace std ...

  3. HDU 3775 Chain Code ——(Pick定理)

    Pick定理运用在整点围城的面积,有以下公式:S围 = S内(线内部的整点个数)+ S线(线上整点的个数)/2 - 1.在这题上,我们可以用叉乘计算S围,题意要求的答案应该是S内+S线.那么我们进行推 ...

  4. 【POJ】2954 Triangle(pick定理)

    http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...

  5. Area(Pick定理POJ1256)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5429   Accepted: 2436 Description ...

  6. poj 2954 Triangle(Pick定理)

    链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS   Memory Limit: 65536K Total Submissio ...

  7. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  8. poj1265Area(pick定理)

    链接  Pick定理是说,在一个平面直角坐标系内,如果一个多边形的顶点全都在格点上,那么这个图形的面积恰好就等于边界上经过的格点数的一半加上内部所含格点数再减一. pick定理的一些应用 题意不好懂, ...

  9. pick定理:面积=内部整数点数+边上整数点数/2-1

    //pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...

随机推荐

  1. MySQL-第二篇SQL语句基础(1)语句分类及DDL语句

    1.什么是SQL语句 SQL是Structed Query Language的缩写,即结构化查询语言.SQL是操作和检索数据库的标准语言,标准的SQL语句可以操作任何关系数据库. 2.标准的SQL语句 ...

  2. Spring Boot 1.x 正式退役,2.x大步向前!

    Java技术栈 www.javastack.cn 优秀的Java技术公众号 早在<Spring Boot 2.1.5 正式发布,1.5.x 即将结束使命!>一文中栈长就提醒大家 Sprin ...

  3. python获取ip地址

    #!/usr/bin/env python # -*- coding: utf-8 -*- import os import socket,fcntl,struct #crontab下shell命令无 ...

  4. Tarjan(lca)

    http://codevs.cn/problem/2370 /   2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond         题目描 ...

  5. kmp(多次无重叠匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=2087 剪花布条 Problem Description 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面 ...

  6. .net core 简单集成JWT报No authenticationScheme was specified, and there was no DefaultChallengeScheme found错误

    #region JWT 认证 services .AddAuthentication(JwtBearerDefaults.AuthenticationScheme) //.AddCustomAuth( ...

  7. ASE Alpha Sprint - backend scrum 7

    本次scrum于2019.11.12在sky garden进行,持续30分钟. 参与人: Zhikai Chen, Jia Ning, Hao Wang 请假: Xin Kang, Lihao Ran ...

  8. 03.LNMP架构-PHP源码包编译部署详细步骤

    一.环境准备 操作系统:CentOS_Server_7.5_x64_1804.iso 部署组件:yasm+libmcrypt+libvpx+tiff+libpng+freetype+jpeg+libg ...

  9. Python元类之由浅入深

    前言 ​ 元类属于python面向对象编程的深层次的魔法,非常重要,它使我们可以更好的掌控类从创建到消亡的整个生命周期过程.很多框架的源码中都使用到了元类.例如 Django Framework 中的 ...

  10. Vue:子组件如何跟父组件通信

    我们知道,父组件使用 prop 传递数据给子组件.但子组件怎么跟父组件通信呢?这个时候 Vue 的自定义事件系统就派得上用场了. 使用 v-on 绑定自定义事件 每个 Vue 实例都实现了事件接口,即 ...