Crash的数字表格
求\(\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j),n,m\leq 10^7\)
解
设\(N<M\),显然有
\]
设
\]
\]
设\(dc[k]=\sum_{i=1}^ki=\frac{(1+k)\times k}{2},F(k)=k^2dc(N/k)dc(M/k)\)
由Mobius反演定理我们有
\]
代入有
\]
\]
维护出后式\(x^2\mu(x)\),两次整除分块即可,不难得知时间复杂度\(O(n)\)。
顺便提一下,如果\(N,M\)很小,我们可以变成一下形式,变为\(O(nlogn+T\sqrt{n})\)(T为询问组数)。
\]
参考代码:
#include <iostream>
#include <cstdio>
#define il inline
#define ri register
#define ll long long
#define yyb 20101009
#define swap(x,y) x^=y^=x^=y
using namespace std;
bool check[10000001];
int prime[750000],pt,mb[10000001];
void prepare(int);
il int min(int,int),dx(int,int);
int main(){
int n,m,nd,md,ndx,mdx,i,ij,j,
jj,ans1(0),ans2;
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);prepare(m);
for(i=1;i<=n;i=ij+1){
ij=min(n/(n/i),m/(m/i));
ans2&=0,nd=n/i,md=m/i;
for(j=1;j<=nd;j=jj+1)
jj=min(nd/(nd/j),md/(md/j)),
(ans2+=(ll)(mb[jj]-mb[j-1])*dx(1,nd/j)%yyb*dx(1,md/j)%yyb)%=yyb;
(ans1+=(ll)ans2*dx(i,ij)%yyb)%=yyb;
}printf("%d",(ans1+yyb)%yyb);
return 0;
}
il int dx(int a,int b){
return (ll)(a+b)*(b-a+1)/2%yyb;
}
void prepare(int n){
int i,j;check[1]|=mb[1]|=true;
for(i=2;i<=n;++i){
if(!check[i])prime[++pt]=i,mb[i]=-1;
for(j=1;j<=pt&&prime[j]<=n/i;++j){
check[i*prime[j]]|=true;
if(!(i%prime[j]))break;
mb[i*prime[j]]=-mb[i];
}
}for(i=1;i<=n;++i)mb[i]=((ll)mb[i]*i%yyb*i+mb[i-1])%yyb;
}
il int min(int a,int b){
return a<b?a:b;
}
Crash的数字表格的更多相关文章
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- 【BZOJ】【2154】Crash的数字表格
莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sq ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)
2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...
- 【BZOJ2154】Crash的数字表格(莫比乌斯反演)
[BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...
- BZOJ2154/BZOJ2693/Luogu1829 Crash的数字表格/JZPFAR 莫比乌斯反演
传送门--Luogu 传送门--BZOJ2154 BZOJ2693是权限题 其中JZPFAR是多组询问,Crash的数字表格是单组询问 先推式子(默认\(N \leq M\),所有分数下取整) \(\ ...
- BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...
- 2154: Crash的数字表格
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3372 Solved: 1258[Submit][Status][ ...
- A1231. Crash的数字表格(贾志鹏)
A1231. Crash的数字表格(贾志鹏) 时间限制:2.0s 内存限制:512.0MB 总提交次数:410 AC次数:154 平均分:63.93 将本题分享到: ...
随机推荐
- Elasticsearch-PHP 命名空间
命名空间 客户端有很多命名空间,通常能够暴漏出他管理的功能.命名空间对应Elasticsearch各种管理的端点.如下是完成的命名空间的列表: 命名空间 功能 indices() 以指数为中心的统计数 ...
- Java服务器工程师任职资格
Java服务器端开发工程师 1.Java服务器端3年以上开发经验 2.至少一个完整游戏项目经验 3.熟练掌握OOA.OOD.OOP 4.掌握常见网游协议开发方法 5.对TCP/IP有深入了解 6.对消 ...
- ThreadLocal原理深入解析
目录 1. 从一次项目经历说起 2. ThreadLocal源码解析 2.1 set方法源码解析 2.2 get方法源码解析 2.3 ThreadLocal源码总结 3. ThreadLocalMap ...
- VUE+WebPack游戏设计:欲望都市城市图层的设计
- java动态规划取硬币问题
最近一直在研究动态规划的问题.今天遇到了取硬币问题. 其实动态规划还是,我从底部向顶部,依次求出每个状态的最小值,然后就可以标记上. 这道题目就是,假如有1,5,7,10这四种币值的硬币,我取14元, ...
- 【UVA11613 训练指南】生产销售规划 【费用流】
题意: Acme公司生产一种X元素,给出该元素在未来M个月中每个月的单位售价.最大产量.最大销售量,以及最大储存时间(过期报废不过可以储存任意多的量).你的任务是计算出公司能够赚到的最大利润. 分析: ...
- 【HDU2138】How many prime numbers
[题目大意] 给n个数判断有几个素数.(每个数<=2^32) 注意多组数据 [题解] 用Rabin_Miller测试跑得飞快... /************* HDU 2138 by chty ...
- opennebula 添加kvm主机日志
Sun Sep :: [ReM][D]: Req: UID: HostDelete invoked, Sun Sep :: [ReM][D]: Req: UID: HostDelete result ...
- 使用 XML-RPC 为 C++ 应用程序启用 Web 服务
http://www.ibm.com/developerworks/cn/webservices/ws-xml-rpc/ 引言 Internet 现在的受欢迎程度越来越高,由于这个原因及其固有的优势, ...
- spring4-3-AOP-AspectJ注解-01-简单使用
1.引入类库 <dependency> <groupId>org.springframework</groupId> <artifactId>sprin ...