时间限制:1秒空间限制:32768K

题目描述

N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式。(要求采用非递归)

输入描述: 输入包括一个整数N,(1<=N<90)。

输出描述: 可能有多组测试数据,对于每组数据, 输出当楼梯阶数是N时的上楼方式个数。

输入例子: 4

输出例子: 5

注:咱有个疑问,求斐波拉契数列的话,基本没有用递归写法的吧?效率贼低(o(╯□╰)o)

由于n可以取到90,因此要用long来存

代码:

#include <iostream>

using namespace std;

int main(){
long a[],n;
while(cin>>n){
a[]=,a[]=;
for(int i=;i<=n;i++)
a[i]=a[i-]+a[i-];
cout<<a[n]<<endl;
}
return ;
}

华科机考:N阶楼梯上楼的更多相关文章

  1. 题目1205:N阶楼梯上楼问题(2008年华中科技大学计算机保研机试真题:递推求解)

    题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:2447 解决:927 题目描写叙述: N阶楼梯上楼问题:一次能够走两阶或一阶,问有多少种上楼方式. (要求 ...

  2. 九度OJ 1205:N阶楼梯上楼问题 (斐波那契数列)

    时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:3739 解决:1470 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括一个整 ...

  3. 九度OJ 1205 N阶楼梯上楼问题 -- 动态规划(递推求解)

    题目地址:http://ac.jobdu.com/problem.php?pid=1205 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括 ...

  4. 九度OJ 1205 N阶楼梯上楼问题 (DP)

    题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:2817 解决:1073 题目描写叙述: N阶楼梯上楼问题:一次能够走两阶或一阶.问有多少种上楼方式. (要 ...

  5. N阶楼梯上楼问题

    N阶楼梯上楼问题 时间限制: 1 Sec  内存限制: 32 MB 题目描述 样例输出 13 #include <stdio.h> int main() { int i, n; long ...

  6. 九度oj 题目1205:N阶楼梯上楼问题

    题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:4990 解决:2039 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用 ...

  7. 计算机考研复试真题 N阶楼梯上楼问题

    题目描述 N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入描述: 输入包括一个整数N,(1<=N<90). 输出描述: 可能有多组测试数据,对于每组数据 ...

  8. 【九度OJ】题目1205:N阶楼梯上楼问题 解题报告

    [九度OJ]题目1205:N阶楼梯上楼问题 解题报告 标签(空格分隔): 九度OJ http://ac.jobdu.com/problem.php?pid=1205 题目描述: N阶楼梯上楼问题:一次 ...

  9. 华为机试题 N阶楼梯的走法,每次走一步或者两步

    在Stairs函数中实现该功能: 一个楼梯有N阶,从下往上走,一步可以走一阶,也可以走两阶,有多少种走法? (0<n<=30)<> 例如3阶楼梯有3种走法: 1.1.1 1.2 ...

随机推荐

  1. JAVA_SE基础——13.选择结构语句

    if选择结构 语法: if(条件){ 代码块 } public class Test{ public static void main(String[] args){ int a = 5; if(a ...

  2. 腾讯云服务器上安装phstudy和lnmp

    phpstudy的安装:wget -c http://lamp.phpstudy.net/phpstudy.bin chmod +x phpstudy.bin #权限设置./phpstudy.bin ...

  3. 裸辞两个月,海投一个月,从Android转战Web前端的求职之路

    前言 看到这个标题的童鞋,可能会产生两种想法: 想法一:这篇文章是标题党 想法二:Android开发越来越不景气了吗?前端越来越火了吗? 我一向不喜欢标题党,标题中的内容是我的亲身经历.我是2016年 ...

  4. react-native-image-picker 运用launchCamera直接调取摄像头的缺陷及修复

    在前几天用react-native进行android版本开发当中,用到了"react-native-image-picker"的插件:根据业务的需求:点击按钮-->直接调取摄 ...

  5. GIT入门笔记(12)- 删除文件、提交删除和恢复删除

    在Git中,删除也是一个修改操作,我们实战一下, 1.先添加add一个新文件test.txt到Git并且提交commit到本地版本库: $ git add test.txt$ git commit - ...

  6. JSON(四)——异步请求中前后端使用Json格式的数据进行交互

    json格式的数据广泛应用于异步请求中前后端的数据交互,本文主要介绍几种使用场景和使用方法. 一,json格式字符串 <input type="button" id=&quo ...

  7. word2vec初探(用python简单实现)

    为什么要用这个? 因为看论文和博客的时候很常见,不论是干嘛的,既然这么火,不妨试试. 如何安装 从网上爬数据下来 对数据进行过滤.分词 用word2vec进行近义词查找等操作 完整的工程传到了我的gi ...

  8. python多进程之间的通信:消息队列Queue

    python中进程的通信:消息队列. 我们知道进程是互相独立的,各自运行在自己独立的内存空间. 所以进程之间不共享任何变量. 我们要想进程之间互相通信,传送一些东西怎么办? 需要用到消息队列!! 进程 ...

  9. Python之函数基础

    1.函数的定义与调用 函数从大方针上考虑总共分为两种:一种是内置函数,另一种是自定义函数.今天主要讲的是自定义函数. s = '金老板小护士' #len(s) def my_len(): #自定义函数 ...

  10. 安装shellinabox-master

    安装shellinabox-master 1 插件介绍:通过web页面管理linux主机(电脑版) a. 安装 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...