BZOJ1017 [JSOI2008]魔兽地图DotR 【树形dp + 背包dp】
题目链接
题解
orz hzwer
树形dp神题
设\(f[i][j][k]\)表示\(i\)号物品恰好花费\(k\)金币,并将\(j\)个物品贡献给父亲的合成时的最大收益
计算\(f[i][j][k]\)时,我们先枚举合成了x个\(i\)号物品,计算出此时的花费各种金币下最大收益
然后就可以枚举\(j \le x\)和\(k\),更新\(f[i][j][k]\)了
计算最大收益,就把第\(l\)个子树的\(f[s][w * x][v]\)看做第\(l\)个物品的第\(v\)种物品【\(w * x\)是该子树需要提供的的贡献】
做分组背包即可计算出花费各种金币时可得到的最大收益
由于整体的关系不确定,我们将每棵树根拿出来再做一次分组背包即可
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = H[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define cls(s) memset(s,0,sizeof(s))
using namespace std;
const int maxn = 55,maxm = 2005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int H[maxn],ne = 1;
struct EDGE{int to,nxt,w;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,H[u],w}; H[u] = ne++;
}
int n,m,rt,f[maxn][101][maxm],g[maxn][maxm],h[maxn][maxm];
int W[maxn],P[maxn],M[maxn],typ[maxn],fa[maxn];
void dfs(int u){
if (!typ[u]){
M[u] = min(M[u],m / P[u]);
for (int i = 0; i <= M[u]; i++)
for (int j = 0; j <= i; j++)
f[u][j][i * P[u]] = (i - j) * W[u];
return;
}
M[u] = INF;
Redge(u){
dfs(to = ed[k].to);
M[u] = min(M[u],M[to] / ed[k].w);
P[u] += P[to] * ed[k].w;
}
M[u] = min(M[u],m / P[u]);
memset(g,-0x3f3f3f3f,sizeof(g));
g[0][0] = 0;
for (int x = M[u]; x >= 0; x--){
int tot = 0;
Redge(u){
++tot; to = ed[k].to;
for (int j = 0; j <= m; j++)
for (int v = 0; v <= j; v++)
g[tot][j] = max(g[tot][j],g[tot - 1][j - v] + f[to][ed[k].w * x][v]);
}
for (int j = 0; j <= x; j++)
for (int v = 0; v <= m; v++){
if (v) g[tot][v] = max(g[tot][v],g[tot][v - 1]);
f[u][j][v] = max(f[u][j][v],g[tot][v] + W[u] * (x - j));
}
}
}
int main(){
memset(f,-0x3f3f3f3f,sizeof(f));
n = read(); m = read(); char c;
REP(i,n){
W[i] = read();
c = getchar(); while (c != 'A' && c != 'B') c = getchar();
if (c == 'A'){
typ[i] = 1;
int x = read(),to,w;
while (x--){
to = read(); w = read();
build(i,to,w);
fa[to] = i;
}
}
else P[i] = read(),M[i] = read();
}
int tot = 0;
for (int u = 1; u <= n; u++)
if (!fa[u]){
dfs(u); ++tot;
for (int i = 0; i <= m; i++)
for (int j = 0; j <= i; j++)
h[tot][i] = max(h[tot][i],h[tot - 1][i - j] + f[u][0][j]);
}
int ans = 0;
for (int i = 0; i <= m; i++) ans = max(ans,h[tot][i]);
printf("%d\n",ans);
return 0;
}
BZOJ1017 [JSOI2008]魔兽地图DotR 【树形dp + 背包dp】的更多相关文章
- [BZOJ1017][JSOI2008]魔兽地图DotR 树形dp
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2597 Solved: 1010[Submit][ ...
- 【BZOJ-1017】魔兽地图DotR 树形DP + 背包
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1566 Solved: 705[Submit][S ...
- BZOJ1017: [JSOI2008]魔兽地图DotR【树形DP】【玄学】
Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...
- [bzoj1017][JSOI2008]魔兽地图 DotR (Tree DP)【有待优化】
Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...
- bzoj1017 [JSOI2008]魔兽地图DotR——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1017 好难想的状态啊!f[i][j][k]表示i号物品有j个向上贡献,一共花了k钱的最大力量 ...
- BZOJ1017: [JSOI2008]魔兽地图DotR
传送门 设$f[i][j][k]$表示对于第$i$个点,向父节点贡献$j$个已合成的装备,花费了$k$的代价,最多获得的力量值. 单纯的$f[i][j][k]$是很难转移的,主要原因是无法维护和其他儿 ...
- 【bzoj1017】[JSOI2008]魔兽地图DotR
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1658 Solved: 755[Submit][S ...
- BZOJ [JSOI2008]魔兽地图DotR
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1243 Solved: 532[Submit][S ...
- BZOJ1017 魔兽地图DotR (树上背包)
一道背包的神题,用到了树上dp和背包dp,这个题的特殊性在于儿子对于父亲节点是有影响的,所以用f[i][j][k]表示第i号装备,其中用j个来合成上层装备,花费k元所能获得最大的力量值. 然后对于每一 ...
随机推荐
- 浅谈mysql权限
一. 背景: “去IOE”的本质是“分布式+开源”架构替代“集中式+封闭”架构,变成彻底的云计算服务模式.去“IE”易,并且应该去,关键确实能省钱,而且运维难度不大,替代技术产品成熟.而去O ...
- 爬虫学习(十八)——selenium解决javascript渲染
selenium 是一个用于Web应用程序测试的工具. Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Fir ...
- js动画之无缝滚动
效果图如下: HTML代码如下: <!DOCTYPE html> <html lang="en"> <head> <meta charse ...
- 利用python在windows环境下爬取赶集网工作信息。
主要用到了多进程和多线程的知识,最后结果保存成csv文件格式,如有需要可改成数据库版本. 对用到的库做下简要介绍,具体请参考官方文档: xpinyin.Pinyin:将输入的中文转成拼音 concur ...
- 中通快递股份有限公司.net高级面试题
中通快递分布式技术开发 gc垃圾回收原理 .net中,托管代码的内存管理是自动的,由GC进行管理,而对于非托管代码,则需要.net手动处理 CLR运行时,内存分为:托管堆和栈,其中栈用于存储值类型 ...
- 基于THINKPHP+layui+Ajax无刷新实现图片上传预览
<fieldset class="layui-elem-field" style="width:500px;margin:50px 0 0 300px;" ...
- MYSQL SQL高级查询技巧
1.UNION,EXCEPT,INTERSECT运算符 A,UNION 运算符 UNION 运算符通过组合其他两个结果表(例如 TABLE1 和 TABLE2)并消去表中任何重复行而派生出一个结果表. ...
- 把SmartForm转换成PDF
摘要:将SmartForm转换为PDF的过程包括3个简单步骤. 调用智能窗体,然后返回OTF数据. 使用“转换”功能模块将OTF数据转换为所需格式. 下载文件 呈现宏“code”时出错:为参数“lan ...
- SharpCompress的压缩文件解压和文件夹压缩
1.前言 最近做一个功能需要用到对压缩文件的解压,就找到了这个SharpCompress不错,还能解压rar的文件.但是网上的资料和我拿到的SharpCompress.dll的方法有些出入,所以我就自 ...
- 4x4矩阵键盘 扫描程序
一:不排除第四位异常处理 uchar JuzhenkeyScan() { // P3=0xfe; // temp=P3; // while(temp!=0xfe) // { // temp=P3; / ...