笔记: Batch Normalization及其反向传播

重点:

在神经网络中,网络是分层的,可以把每一层视为一个单独的分类器,将一个网络看成分类器的串联。这就意味着,在训练过程中,随着某一层分类器的参数的改变,其输出的分布也会改变,这就导致下一层的输入的分布不稳定。分类器需要不断适应新的分布,这就使得模型难以收敛

一般的神经网络的梯度大小往往会与参数的大小相关(仿射变换),且随着训练的过程,会产生较大的波动,这就导致学习率不宜设置的太大。Batch Normalization使得梯度大小相对固定,一定程度上允许我们使用更高的学习率

注意BN的线性变换和一般隐藏层的线性变换仍有区别,前者是element-wise的,后者是矩阵乘法

\[Z=np.dot(W,X)+b
\]
\[\tilde{Z}=\gamma*Z_{norm}+\beta
\]

通过引入参数γ和β,极端情况下,网络可以将γ和β训练为原分布的标准差和均值来恢复数据的原始分布。这样保证了引入BN,不会使效果更差。

网络中BN层的作用

重点:

  1. 加快网络的训练和收敛的速度
  2. 控制梯度爆炸防止梯度消失
  3. 防止过拟合(吴恩达老师说bn的正则化几乎是一个意想不到的副作用)

加快收敛速度:在深度神经网络中中,如果每层的数据分布都不一样的话,将会导致网络非常难收敛和训练,而如果把 每层的数据都在转换在均值为零,方差为1 的状态下,这样每层数据的分布都是一样的训练会比较容易收敛

梯度消失:在深度神经网络中,如果网络的激活输出很大,其对应的梯度就会很小,导致网络的学习速率就会很慢,假设网络中每层的学习梯度都小于最大值0.25,网络中有n层,因为链式求导的原因,第一层的梯度将会小于0.25的n次方,所以学习速率相对来说会变的很慢,而对于网络的最后一层只需要对自身求导一次,梯度就大,学习速率就会比较快,这就会造成在一个很深的网络中,浅层基本不学习,权值变化小,而后面几层网络一直学习,后面的网络基本可以表征整个网络,这样失去了深度的意义。(使用BN层归一化后,网络的输出就不会很大,梯度就不会很小)

梯度爆炸:第一层偏移量的梯度=激活层斜率1x权值1x激活层斜率2x…激活层斜率(n-1)x权值(n-1)x激活层斜率n,假如激活层斜率均为最大值0.25,所有层的权值为100,这样梯度就会指数增加。(使用bn层后权值的更新也不会很大)

BN算法防止过拟合:在网络的训练中,BN的使用使得一个minibatch中所有样本都被关联在了一起,因此网络不会从某一个训练样本中生成确定的结果,即同样一个样本的输出不再仅仅取决于样本的本身,也取决于跟这个样本同属一个batch的其他样本,而每次网络都是随机取batch,这样就会使得整个网络不会朝这一个方向使劲学习。一定程度上避免了过拟合

吴恩达老师说:Batch归一化还有一个作用,它有轻微的正则化效果,因为在mini-batch上计算的均值和方差,而不是在整个数据集上均值和方差有一些小的噪声。所以和dropout相似,它往每个隐藏层的激活值上增加了噪音,dropout有增加噪音的方式,它使一个隐藏的单元,以一定的概率乘以0,以一定的概率乘以1,所以你的dropout含几重噪音,因为它乘以0或1。

对比而言,Batch归一化含几重噪音,因为标准偏差的缩放和减去均值带来的额外噪音。这里的均值和标准差的估计值也是有噪音的,所以类似于dropout,Batch归一化有轻微的正则化效果,因为给隐藏单元添加了噪音,这迫使后部单元不过分依赖任何一个隐藏单元,类似于dropout,它给隐藏层增加了噪音,因此有轻微的正则化效果。因为添加的噪音很微小,所以并不是巨大的正则化效果,你可以将Batch归一化和dropout一起使用,如果你想得到dropout更强大的正则化效果。

也许另一个轻微非直观的效果是,如果你应用了较大的mini-batch,对,比如说,你用了512而不是64,通过应用较大的min-batch,你减少了噪音,因此减少了正则化效果,这是dropout的一个奇怪的性质,就是应用较大的mini-batch可以减少正则化效果。

说到这儿,我会把Batch归一化当成一种正则化,这确实不是其目的,但有时它会对你的算法有额外的期望效应或非期望效应。但是不要把Batch归一化当作正则化,把它当作将你归一化隐藏单元激活值并加速学习的方式,我认为正则化几乎是一个意想不到的副作用

Batch Normalization及其反向传播及bn层的作用的更多相关文章

  1. 激活函数、正向传播、反向传播及softmax分类器,一篇就够了!

    1. 深度学习有哪些应用 图像:图像识别.物体识别.图片美化.图片修复.目标检测. 自然语言处理:机器创作.个性化推荐.文本分类.翻译.自动纠错.情感分析. 数值预测.量化交易 2. 什么是神经网络 ...

  2. BN层

    论文名字:Batch Normalization: Accelerating Deep Network Training by  Reducing Internal Covariate Shift 论 ...

  3. 深度解析Droupout与Batch Normalization

    Droupout与Batch Normalization都是深度学习常用且基础的训练技巧了.本文将从理论和实践两个角度分布其特点和细节. Droupout 2012年,Hinton在其论文中提出Dro ...

  4. [转载] ReLU和BN层简析

    [转载] ReLU和BN层简析 来源:https://blog.csdn.net/huang_nansen/article/details/86619108 卷积神经网络中,若不采用非线性激活,会导致 ...

  5. 图像分类(二)GoogLenet Inception_v2:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

    Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3* ...

  6. 《RECURRENT BATCH NORMALIZATION》

    原文链接 https://arxiv.org/pdf/1603.09025.pdf Covariate 协变量:在实验的设计中,协变量是一个独立变量(解释变量),不为实验者所操纵,但仍影响实验结果. ...

  7. 【卷积神经网络】对BN层的解释

    前言 Batch Normalization是由google提出的一种训练优化方法.参考论文:Batch Normalization Accelerating Deep Network Trainin ...

  8. 优化深度神经网络(三)Batch Normalization

    Coursera吴恩达<优化深度神经网络>课程笔记(3)-- 超参数调试.Batch正则化和编程框架 1. Tuning Process 深度神经网络需要调试的超参数(Hyperparam ...

  9. batch normalization学习理解笔记

    batch normalization学习理解笔记 最近在Andrew Ng课程中学到了Batch Normalization相关内容,通过查阅资料和原始paper,基本上弄懂了一些算法的细节部分,现 ...

  10. Batch Normalization详解

    目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Norma ...

随机推荐

  1. 四月二十四号java基础知识

    1.输入输出是指程序与外部设备或其他计算机进行交互的操作2.流(stream)是指计算机各部件之间的数据流动流的内容上划分:流分为字节流和字符流3.输入流:将数据从外设或外存(如键盘.鼠标.文件等)传 ...

  2. 【Spring注解驱动】(三)servlet3.0

    前言 今天是7.21日,终于是看完了..暑假在家学习是真的差点意思 1 Servlet 3.0简介 Servlet 2.0是在web.xml中配置servlet filter.listener.Dis ...

  3. AI测试101:测试AI系统的实用技巧&ML和AI自动化工具

    基于人工智能的系统,也称为神经网络(NN Neural Networks),和其他应用程序一样是 "系统",因此需要测试.本文将指导你测试AI和基于NN的系统,并理解相关概念. 测 ...

  4. Ajax 以及 Ajax基于Promise封装

    AJAX - 创建 XMLHttpRequest 对象 var xmlhttp = new XMLHttpRequest(); 通过打印实例对象我们发现,我们打印的是 xmlhttp 对象,里面所有的 ...

  5. #Python 利用pivot_table,数据透视表进行数据分析

    前面我们分享了,利用python进行数据合并和连接,但是工作中,我们往往需要对数据进一步的聚合或者运算,以求最后的数据结果. 今天我们就来学习一下利用pandas模块,对数据集进行数据透视分析. pi ...

  6. Java动态调用实体的get方法

    /** * 动态调用实体的get方法(注意返回值) * @param dto 实体 * @param name 动态拼接字段 * @return {@link String} * @date 2021 ...

  7. 获取android app 的Activity 和 Package

    开头 appium 配置, sdk 配置,jdk配置,adb配置,python配置是我们app 自动化测试必不可少的配置,当然这种配置网上有很多,我们在这里就不展开说了. 直接就开始自动化脚本的dem ...

  8. 2022-12-28:有n个黑白棋子,它们的一面是黑色,一面是白色, 它们被排成一行,位置0~n-1上。一开始所有的棋子都是黑色向上, 一共有q次操作,每次操作将位置标号在区间[L,R]内的所有棋子翻

    2022-12-28:有n个黑白棋子,它们的一面是黑色,一面是白色, 它们被排成一行,位置0~n-1上.一开始所有的棋子都是黑色向上, 一共有q次操作,每次操作将位置标号在区间[L,R]内的所有棋子翻 ...

  9. 2020-08-13:Hadoop生态圈的了解?

    福哥答案2020-08-13: 该项目包括以下模块:1.Common(公共工具)支持其他Hadoop模块的公共工具. 2.HDFS(Hadoop分布式文件系统)提供对应用程序数据的高吞吐量访问的分布式 ...

  10. Mysql- DDL/DML/DQL/DCL 数据库基本操作语句(持续更新中)

    Mysql基本语法 前言: 在测试项目中经常需要使用到简单的Mysql语句,但是不知道语句结构是什么,经常在百度查来查去: 以下就是总结Mysql常用的基础操作语句: 只需要执行从创建开始执行示例中的 ...