Batch Normalization及其反向传播及bn层的作用
笔记: Batch Normalization及其反向传播
重点:
在神经网络中,网络是分层的,可以把每一层视为一个单独的分类器,将一个网络看成分类器的串联。这就意味着,在训练过程中,随着某一层分类器的参数的改变,其输出的分布也会改变,这就导致下一层的输入的分布不稳定。分类器需要不断适应新的分布,这就使得模型难以收敛。
一般的神经网络的梯度大小往往会与参数的大小相关(仿射变换),且随着训练的过程,会产生较大的波动,这就导致学习率不宜设置的太大。Batch Normalization使得梯度大小相对固定,一定程度上允许我们使用更高的学习率。
注意BN的线性变换和一般隐藏层的线性变换仍有区别,前者是element-wise的,后者是矩阵乘法。
\]
\]
通过引入参数γ和β,极端情况下,网络可以将γ和β训练为原分布的标准差和均值来恢复数据的原始分布。这样保证了引入BN,不会使效果更差。
网络中BN层的作用
重点:
- 加快网络的训练和收敛的速度
- 控制梯度爆炸防止梯度消失
- 防止过拟合(吴恩达老师说bn的正则化几乎是一个意想不到的副作用)
加快收敛速度:在深度神经网络中中,如果每层的数据分布都不一样的话,将会导致网络非常难收敛和训练,而如果把 每层的数据都在转换在均值为零,方差为1 的状态下,这样每层数据的分布都是一样的训练会比较容易收敛。
梯度消失:在深度神经网络中,如果网络的激活输出很大,其对应的梯度就会很小,导致网络的学习速率就会很慢,假设网络中每层的学习梯度都小于最大值0.25,网络中有n层,因为链式求导的原因,第一层的梯度将会小于0.25的n次方,所以学习速率相对来说会变的很慢,而对于网络的最后一层只需要对自身求导一次,梯度就大,学习速率就会比较快,这就会造成在一个很深的网络中,浅层基本不学习,权值变化小,而后面几层网络一直学习,后面的网络基本可以表征整个网络,这样失去了深度的意义。(使用BN层归一化后,网络的输出就不会很大,梯度就不会很小)
梯度爆炸:第一层偏移量的梯度=激活层斜率1x权值1x激活层斜率2x…激活层斜率(n-1)x权值(n-1)x激活层斜率n,假如激活层斜率均为最大值0.25,所有层的权值为100,这样梯度就会指数增加。(使用bn层后权值的更新也不会很大)
BN算法防止过拟合:在网络的训练中,BN的使用使得一个minibatch中所有样本都被关联在了一起,因此网络不会从某一个训练样本中生成确定的结果,即同样一个样本的输出不再仅仅取决于样本的本身,也取决于跟这个样本同属一个batch的其他样本,而每次网络都是随机取batch,这样就会使得整个网络不会朝这一个方向使劲学习。一定程度上避免了过拟合。
吴恩达老师说:Batch归一化还有一个作用,它有轻微的正则化效果,因为在mini-batch上计算的均值和方差,而不是在整个数据集上,均值和方差有一些小的噪声。所以和dropout相似,它往每个隐藏层的激活值上增加了噪音,dropout有增加噪音的方式,它使一个隐藏的单元,以一定的概率乘以0,以一定的概率乘以1,所以你的dropout含几重噪音,因为它乘以0或1。
对比而言,Batch归一化含几重噪音,因为标准偏差的缩放和减去均值带来的额外噪音。这里的均值和标准差的估计值也是有噪音的,所以类似于dropout,Batch归一化有轻微的正则化效果,因为给隐藏单元添加了噪音,这迫使后部单元不过分依赖任何一个隐藏单元,类似于dropout,它给隐藏层增加了噪音,因此有轻微的正则化效果。因为添加的噪音很微小,所以并不是巨大的正则化效果,你可以将Batch归一化和dropout一起使用,如果你想得到dropout更强大的正则化效果。
也许另一个轻微非直观的效果是,如果你应用了较大的mini-batch,对,比如说,你用了512而不是64,通过应用较大的min-batch,你减少了噪音,因此减少了正则化效果,这是dropout的一个奇怪的性质,就是应用较大的mini-batch可以减少正则化效果。
说到这儿,我会把Batch归一化当成一种正则化,这确实不是其目的,但有时它会对你的算法有额外的期望效应或非期望效应。但是不要把Batch归一化当作正则化,把它当作将你归一化隐藏单元激活值并加速学习的方式,我认为正则化几乎是一个意想不到的副作用。
Batch Normalization及其反向传播及bn层的作用的更多相关文章
- 激活函数、正向传播、反向传播及softmax分类器,一篇就够了!
1. 深度学习有哪些应用 图像:图像识别.物体识别.图片美化.图片修复.目标检测. 自然语言处理:机器创作.个性化推荐.文本分类.翻译.自动纠错.情感分析. 数值预测.量化交易 2. 什么是神经网络 ...
- BN层
论文名字:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 论 ...
- 深度解析Droupout与Batch Normalization
Droupout与Batch Normalization都是深度学习常用且基础的训练技巧了.本文将从理论和实践两个角度分布其特点和细节. Droupout 2012年,Hinton在其论文中提出Dro ...
- [转载] ReLU和BN层简析
[转载] ReLU和BN层简析 来源:https://blog.csdn.net/huang_nansen/article/details/86619108 卷积神经网络中,若不采用非线性激活,会导致 ...
- 图像分类(二)GoogLenet Inception_v2:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3* ...
- 《RECURRENT BATCH NORMALIZATION》
原文链接 https://arxiv.org/pdf/1603.09025.pdf Covariate 协变量:在实验的设计中,协变量是一个独立变量(解释变量),不为实验者所操纵,但仍影响实验结果. ...
- 【卷积神经网络】对BN层的解释
前言 Batch Normalization是由google提出的一种训练优化方法.参考论文:Batch Normalization Accelerating Deep Network Trainin ...
- 优化深度神经网络(三)Batch Normalization
Coursera吴恩达<优化深度神经网络>课程笔记(3)-- 超参数调试.Batch正则化和编程框架 1. Tuning Process 深度神经网络需要调试的超参数(Hyperparam ...
- batch normalization学习理解笔记
batch normalization学习理解笔记 最近在Andrew Ng课程中学到了Batch Normalization相关内容,通过查阅资料和原始paper,基本上弄懂了一些算法的细节部分,现 ...
- Batch Normalization详解
目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Norma ...
随机推荐
- 四月二十四号java基础知识
1.输入输出是指程序与外部设备或其他计算机进行交互的操作2.流(stream)是指计算机各部件之间的数据流动流的内容上划分:流分为字节流和字符流3.输入流:将数据从外设或外存(如键盘.鼠标.文件等)传 ...
- 【Spring注解驱动】(三)servlet3.0
前言 今天是7.21日,终于是看完了..暑假在家学习是真的差点意思 1 Servlet 3.0简介 Servlet 2.0是在web.xml中配置servlet filter.listener.Dis ...
- AI测试101:测试AI系统的实用技巧&ML和AI自动化工具
基于人工智能的系统,也称为神经网络(NN Neural Networks),和其他应用程序一样是 "系统",因此需要测试.本文将指导你测试AI和基于NN的系统,并理解相关概念. 测 ...
- Ajax 以及 Ajax基于Promise封装
AJAX - 创建 XMLHttpRequest 对象 var xmlhttp = new XMLHttpRequest(); 通过打印实例对象我们发现,我们打印的是 xmlhttp 对象,里面所有的 ...
- #Python 利用pivot_table,数据透视表进行数据分析
前面我们分享了,利用python进行数据合并和连接,但是工作中,我们往往需要对数据进一步的聚合或者运算,以求最后的数据结果. 今天我们就来学习一下利用pandas模块,对数据集进行数据透视分析. pi ...
- Java动态调用实体的get方法
/** * 动态调用实体的get方法(注意返回值) * @param dto 实体 * @param name 动态拼接字段 * @return {@link String} * @date 2021 ...
- 获取android app 的Activity 和 Package
开头 appium 配置, sdk 配置,jdk配置,adb配置,python配置是我们app 自动化测试必不可少的配置,当然这种配置网上有很多,我们在这里就不展开说了. 直接就开始自动化脚本的dem ...
- 2022-12-28:有n个黑白棋子,它们的一面是黑色,一面是白色, 它们被排成一行,位置0~n-1上。一开始所有的棋子都是黑色向上, 一共有q次操作,每次操作将位置标号在区间[L,R]内的所有棋子翻
2022-12-28:有n个黑白棋子,它们的一面是黑色,一面是白色, 它们被排成一行,位置0~n-1上.一开始所有的棋子都是黑色向上, 一共有q次操作,每次操作将位置标号在区间[L,R]内的所有棋子翻 ...
- 2020-08-13:Hadoop生态圈的了解?
福哥答案2020-08-13: 该项目包括以下模块:1.Common(公共工具)支持其他Hadoop模块的公共工具. 2.HDFS(Hadoop分布式文件系统)提供对应用程序数据的高吞吐量访问的分布式 ...
- Mysql- DDL/DML/DQL/DCL 数据库基本操作语句(持续更新中)
Mysql基本语法 前言: 在测试项目中经常需要使用到简单的Mysql语句,但是不知道语句结构是什么,经常在百度查来查去: 以下就是总结Mysql常用的基础操作语句: 只需要执行从创建开始执行示例中的 ...