所谓"扒谱"是指通过听歌或观看演奏视频等方式,逐步分析和还原音乐作品的曲谱或乐谱的过程。它是音乐学习和演奏的一种常见方法,通常由音乐爱好者、乐手或学生使用。

在扒谱的过程中,人们会仔细聆听音乐作品,辨别和记录出各个音符、和弦、节奏等元素,并通过试错和反复推敲来逐渐还原出准确的曲谱或乐谱。这对于那些没有正式乐谱或想学习特定曲目的人来说,是一种有效的方式。

扒谱的目的是为了更好地理解和演奏音乐作品,从中学习技巧、乐曲结构和艺术表达等方面。但不懂乐理的人很难听出音符和音准,本次我们通过openvpi的开源项目some来直接针对mp3文件进行扒谱,将mp3转换为midi文件。

项目配置

首先我们来克隆项目:

git clone https://github.com/openvpi/SOME.git

进入项目的目录some:

cd some

接着下载项目的预训练模型:

https://pan.baidu.com/s/1lVQcKP7ijTELslJNgoDqkQ?pwd=odsm

2stems模型放到项目的pretrained_models目录下。

ckpt模型放入项目的ckpt目录下。

如果没有ckpt和pretrained_models目录,请手动建立。

如下所示:

├───ckpt

│ config.yaml

│ model_ckpt_steps_104000_simplified.ckpt

├───pretrained_models

│ └───2stems

│ ._checkpoint

│ checkpoint

│ model.data-00000-of-00001

│ model.index

│ model.meta

如此,项目就配置好了。

背景音乐和人声分离

扒谱主要针对人声部分,所以需要spleeter的参与,关于spleeter,请参见:人工智能AI库Spleeter免费人声和背景音乐分离实践(Python3.10),囿于篇幅,这里不再赘述。

执行命令:

spleeter separate -p spleeter:2stems -o ./output ./test.mp3

这里使用2stems模型已经在上文中进行下载,并且放置在项目的pretrained_models目录。

如果没有output目录,请手动建立,test.mp3为需要扒谱的音乐文件。

随后会将背景音乐accompaniment.wav和人声vocals.wav分别输出在项目的output目录:

├───output
│ └───test
│ accompaniment.wav
│ vocals.wav

人声去噪

一般情况下,分离后的人声可能还存在混音等噪音,会影响转换的效果。

这里使用noisereduce来进行降噪:

pip install noisereduce

编写降噪代码:

from scipy.io import wavfile
import noisereduce as nr
# load data
rate, data = wavfile.read("./output/test/vocals.wav")
# perform noise reduction
reduced_noise = nr.reduce_noise(y=data, sr=rate)
wavfile.write("./output/test/vocals.wav", rate, reduced_noise)

运行后会对vocals.wav人声文件进行降噪重写操作。

扒谱(wav转换midi)

接着运行命令进行转换:

python infer.py --model ./ckpt/model_ckpt_steps_104000_simplified.ckpt --wav ./output/test/vocals.wav

程序返回:

python infer.py --model ./ckpt/model_ckpt_steps_104000_simplified.ckpt --wav ./output/test/vocals.wav
accumulate_grad_batches: 1, audio_sample_rate: 44100, binarization_args: {'num_workers': 0, 'shuffle': True}, binarizer_cls: preprocessing.MIDIExtractionBinarizer, binary_data_dir: data/some_ds_fixmel_spk3_aug8/binary,
clip_grad_norm: 1, dataloader_prefetch_factor: 2, ddp_backend: nccl, ds_workers: 4, finetune_ckpt_path: None,
finetune_enabled: False, finetune_ignored_params: [], finetune_strict_shapes: True, fmax: 8000, fmin: 40,
freezing_enabled: False, frozen_params: [], hop_size: 512, log_interval: 100, lr_scheduler_args: {'min_lr': 1e-05, 'scheduler_cls': 'lr_scheduler.scheduler.WarmupLR', 'warmup_steps': 5000},
max_batch_frames: 80000, max_batch_size: 8, max_updates: 10000000, max_val_batch_frames: 10000, max_val_batch_size: 1,
midi_extractor_args: {'attention_drop': 0.1, 'attention_heads': 8, 'attention_heads_dim': 64, 'conv_drop': 0.1, 'dim': 512, 'ffn_latent_drop': 0.1, 'ffn_out_drop': 0.1, 'kernel_size': 31, 'lay': 8, 'use_lay_skip': True}, midi_max: 127, midi_min: 0, midi_num_bins: 128, midi_prob_deviation: 1.0,
midi_shift_proportion: 0.0, midi_shift_range: [-6, 6], model_cls: modules.model.Gmidi_conform.midi_conforms, num_ckpt_keep: 5, num_sanity_val_steps: 1,
num_valid_plots: 300, optimizer_args: {'beta1': 0.9, 'beta2': 0.98, 'lr': 0.0001, 'optimizer_cls': 'torch.optim.AdamW', 'weight_decay': 0}, pe: rmvpe, pe_ckpt: pretrained/rmvpe/model.pt, permanent_ckpt_interval: 40000,
permanent_ckpt_start: 200000, pl_trainer_accelerator: auto, pl_trainer_devices: auto, pl_trainer_num_nodes: 1, pl_trainer_precision: 32-true,
pl_trainer_strategy: auto, raw_data_dir: [], rest_threshold: 0.1, sampler_frame_count_grid: 6, seed: 114514,
sort_by_len: True, task_cls: training.MIDIExtractionTask, test_prefixes: None, train_set_name: train, units_dim: 80,
units_encoder: mel, units_encoder_ckpt: pretrained/contentvec/checkpoint_best_legacy_500.pt, use_buond_loss: True, use_midi_loss: True, val_check_interval: 4000,
valid_set_name: valid, win_size: 2048
| load 'model' from 'ckpt\model_ckpt_steps_104000_simplified.ckpt'.
100%|████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.66it/s]
MIDI file saved at: 'output\test\vocals.mid'

转换好的钢琴旋律midi文件存放在output目录下,直接双击播放即可,也可以通过代码进行播放:

''' pg_midi_sound101.py
play midi music files (also mp3 files) using pygame
tested with Python273/331 and pygame192 by vegaseat
'''
import pygame as pg
def play_music(music_file):
'''
stream music with mixer.music module in blocking manner
this will stream the sound from disk while playing
'''
clock = pg.time.Clock()
try:
pg.mixer.music.load(music_file)
print("Music file {} loaded!".format(music_file))
except pygame.error:
print("File {} not found! {}".format(music_file, pg.get_error()))
return
pg.mixer.music.play()
# check if playback has finished
while pg.mixer.music.get_busy():
clock.tick(30)
# pick a midi or MP3 music file you have in the working folder
# or give full pathname
music_file = r"D:\work\YiJianBaPu\output\test\vocals.mid"
#music_file = "Drumtrack.mp3"
freq = 44100 # audio CD quality
bitsize = -16 # unsigned 16 bit
channels = 2 # 1 is mono, 2 is stereo
buffer = 2048 # number of samples (experiment to get right sound)
pg.mixer.init(freq, bitsize, channels, buffer)
# optional volume 0 to 1.0
pg.mixer.music.set_volume(0.8)
try:
play_music(music_file)
except KeyboardInterrupt:
# if user hits Ctrl/C then exit
# (works only in console mode)
pg.mixer.music.fadeout(1000)
pg.mixer.music.stop()
raise SystemExit

结语

笔者在原项目的基础上进行了fork,添加了人声分离和降噪的功能,并且整合了预训练模型,与众乡亲同飨:

https://github.com/v3ucn/YiJianBaPu

不懂乐理,也能扒谱,基于openvpi将mp3转换为midi乐谱(Python3.10)的更多相关文章

  1. 闻其声而知雅意,基于Pytorch(mps/cpu/cuda)的人工智能AI本地语音识别库Whisper(Python3.10)

    前文回溯,之前一篇:含辞未吐,声若幽兰,史上最强免费人工智能AI语音合成TTS服务微软Azure(Python3.10接入),利用AI技术将文本合成语音,现在反过来,利用开源库Whisper再将语音转 ...

  2. 影片自由,丝滑流畅,Docker容器基于WebDav协议通过Alist挂载(百度网盘/阿里云盘)Python3.10接入

    使用过NAS(Network Attached Storage)的朋友都知道,它可以通过局域网将本地硬盘转换为局域网内的"网盘",简单理解就是搭建自己的"私有云" ...

  3. 玫瑰花变蚊子血,自动化无痕浏览器对比测试,新贵PlayWright Vs 老牌Selenium,基于Python3.10

    也许每一个男子全都有过这样的两个女人,至少两个.娶了红玫瑰,久而久之,红的变了墙上的一抹蚊子血,白的还是床前明月光:娶了白玫瑰,白的便是衣服上沾的一粒饭黏子,红的却是心口上一颗朱砂痣.--张爱玲< ...

  4. 登峰造极,师出造化,Pytorch人工智能AI图像增强框架ControlNet绘画实践,基于Python3.10

    人工智能太疯狂,传统劳动力和内容创作平台被AI枪毙,弃尸尘埃.并非空穴来风,也不是危言耸听,人工智能AI图像增强框架ControlNet正在疯狂地改写绘画艺术的发展进程,你问我绘画行业未来的样子?我只 ...

  5. 好饭不怕晚,Google基于人工智能AI大语言对话模型Bard测试和API调用(Python3.10)

    谷歌(Google)作为开源过著名深度学习框架Tensorflow的超级大厂,是人工智能领域一股不可忽视的中坚力量,旗下新产品Bard已经公布测试了一段时间,毁誉参半,很多人把Google的Bard和 ...

  6. 基于Metronic的Bootstrap开发框架经验总结(10)--优化Bootstrap图标管理

    在基于Bootstrap开发的项目中,鲜艳颜色的按钮,以及丰富的图表是很吸引人的特点,为了将这个特点发挥到极致,可以利用Bootstrap图标抽取到数据库里面,并在界面中进行管理和使用,这样我们可以把 ...

  7. 基于腾讯云CLB实现K8S v1.10.1集群高可用+负载均衡

    概述: 最近对K8S非常感兴趣,同时对容器的管理等方面非常出色,是一款非常开源,强大的容器管理方案,最后经过1个月的本地实验,最终决定在腾讯云平台搭建属于我们的K8S集群管理平台~ 采购之后已经在本地 ...

  8. 构建基于深度学习神经网络协同过滤模型(NCF)的视频推荐系统(Python3.10/Tensorflow2.11)

    毋庸讳言,和传统架构(BS开发/CS开发)相比,人工智能技术确实有一定的基础门槛,它注定不是大众化,普适化的东西.但也不能否认,人工智能技术也具备像传统架构一样"套路化"的流程,也 ...

  9. 四、基于hadoop的nginx访问日志分析---top 10 request

    代码: # cat top_10_request.py #!/usr/bin/env python # coding=utf-8 from mrjob.job import MRJob from mr ...

  10. 基于Stm32的MP3播放器设计与实现

    原创博文,转载请注明出处 这是我高级电子技术试验课做的作业,拿来共享一下.项目在安福莱例程基础之上进行的功能完善,里面的部分内容可参考安福莱mp3例程.当然用的板子也是安福莱的板子,因为算起来总共做了 ...

随机推荐

  1. MariaDB start 报错:mysql-bin.index' not found (Errcode: 2) (Errcode: 13)

    问题是修改配置log-bin=/data/mysql/binlog/mysql-bin后出现的. 报错:Errcode: 2 mkdir -p /data/mysql/binlog ## 和正常的DB ...

  2. linux文本编辑YCM报错

    linux文本编辑YCM报错 刚从github安装了vimplus,可是发现存在不少的问题.索性给直接记录一下. The ycmd server SHUT DOWN (restart with ':Y ...

  3. JMeter 线程组之Stepping Thread Group插件

    JMeter 线程组之Stepping Thread Group插件 测试环境   apache-jmeter-2.13 插件:https://jmeter-plugins.org/downloads ...

  4. Mapbox Style 规范

    https://my.oschina.net/u/3185947/blog/4819218

  5. JDK中「SPI」原理分析

    目录 一.SPI简介 1.概念 2.入门案例 2.1 定义接口 2.2 两个实现类 2.3 配置文件 2.4 测试代码 二.原理分析 1.ServiceLoader结构 2.iterator迭代方法 ...

  6. 预处理器 Less 的十个语法

    Less 是一门 CSS 预处理语言,它扩充了 CSS 语言,增加了诸如变量.混合(mixin).函数等功能,让 CSS 更易维护.方便制作主题.扩充. 不过浏览器只能识别 CSS 语言,所以 Les ...

  7. [django]路由变量与正则表达式

    示例: urlpatterns = [ path('detail.<int:id>.html', detailView, name='detail'), ] 路由变量的类型 示例路由配置了 ...

  8. Windows查找监听端口对应的进程及其路径

    前言 假设扫描到1234端口存在可疑进程,需要找到该监听端口对应的进程及其进程文件的全路径,判断是否为可疑程序. 步骤 启动命令行:按win + r键,然后输入"cmd" 查看端口 ...

  9. C#应用处理传入参数 - 开源研究系列文章

    今天介绍关于C#的程序传入参数的处理例子. 程序的传入参数应用比较普遍,特别是一个随操作系统启动的程序,需要设置程序启动的时候不显示主窗体,而是在后台运行,于是就有了传入参数问题,比如传入/h或者/m ...

  10. Vue3 vite:is a JavaScript file. Did you mean to enable the 'allowJs' option?

    描述 今天在vue3+vite下进行打包时,突然vscode报了一个error. 大概的意识是询问是否启用"allowJS"选项,因为该文件在程序内是指定用于编译的根文件. 提示信 ...