UVaLive 7455 Linear Ecosystem (Gaussi 消元)
题意:对一个k元向量, 每次左乘一个k*k的矩阵得到新的向量.问经过一定次数的左乘后,能否使得该向量不再变化. (同时要求此时向量非零)。
析:设初始向量为A,矩阵为P.由于每次矩阵P都是左乘A, 那么可以把若干个P合并. 则题目的条件是:
化简为:
由于要求
所以 P-1 必须不可逆.可以直接用高斯消元求P-1的秩,判断是否可逆(满秩即可逆).
所以这个题,并不用求解,只要判断秩就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e2 + 5;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
double a[25][25]; bool Gauss(){
int ans = 0, r = 0;
for(int i = 0; i < n; ++i){
for(int j = r; j < n; ++j)
if(fabs(a[j][i]) > eps){
for(int k = i; k < n; ++k)
swap(a[j][k], a[r][k]);
break;
}
if(fabs(a[r][i]) < eps){ ++ans; continue; }
for(int j = 0; j < n; ++j)
if(j != r && fabs(a[j][i]) > eps){
double tmp = a[j][i]/a[r][i];
for(int k = i; k < n; ++k)
a[j][k] -= tmp * a[r][k];
}
++r;
}
return ans;
} int main(){
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
scanf("%d", &n);
for(int i = 0; i < n; ++i){
for(int j = 0; j < n; ++j)
scanf("%lf", a[i]+j);
a[i][i] -= 1.0;
} printf("%d", Gauss());
if(kase == T) continue;
printf("%c", kase % 5 ? ' ' : '\n');
}
if(T % 5) printf("\n");
return 0;
}
UVaLive 7455 Linear Ecosystem (Gaussi 消元)的更多相关文章
- UVALive 7455 Linear Ecosystem (高斯消元)
Linear Ecosystem 题目链接: http://acm.hust.edu.cn/vjudge/contest/127401#problem/B Description http://7xj ...
- UVALive 6449 IQ Test --高斯消元?
题意:给你一串数字,问这串数字符合f[n] = a*f[n-1],f[n] = a*f[n-1]+b*f[n-2],f[n] = a*f[n-1]+b*f[n-2]+c*f[n-3]这几个方程中的哪个 ...
- First Knight UVALive - 4297(优化高斯消元解概率dp)
题意: 一个矩形区域被分成 m*n 个单元编号为 (1, 1)至 (m, n),左上为 (1, 1),右下为(m, n).给出P(k)i,j,其中 1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ...
- UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
- UVALive - 6185 Find the Outlier暴力填表+高斯消元+卡eps
https://cn.vjudge.net/problem/UVALive-6185 我真的是服了orz eps 1e5,1e6过不了 开1e2 1e1都能过 题意:给你一个d阶多项式f的f(0),f ...
- UVALive - 3490 Generator (AC自动机+高斯消元dp)
初始有一个空串s,从前n个大写字母中不断随机取出一个字母添加到s的结尾,出现模式串t时停止,求停止时s的长度期望. 这道题解法不唯一,比较无脑的方法是对模式串t建一个单串AC自动机,设u为自动机上的一 ...
- Gambler Bo (高斯消元求特解)
对于图中的每一个点假设点击Xi * m + j 然后每个点都有那么对于每一个点可以列举出一个方程式,n*m个点解n*m个未知数.利用高斯消元就可以解决. 问题就在这个题目可能不止有一个特,所以我们需要 ...
- 【线性代数】2-3:消元与矩阵的关系(Elimination and Matrix)
title: [线性代数]2-3:消元与矩阵的关系(Elimination and Matrix) toc: true categories: Mathematic Linear Algebra da ...
- 【线性代数】2-2:消元(Eliminate)
title: [线性代数]2-2:消元(Eliminate) toc: true categories: Mathematic Linear Algebra date: 2017-08-31 16:1 ...
随机推荐
- ActiveMQ消息的延时和定时投递
ActiveMQ对消息延时和定时投递做了很好的支持,其内部启动Scheduled来对该功能支持,也提供了一个封装的消息类型:org.apache.activemq.ScheduledMessage,只 ...
- awk批量处理文件,对第一列去重并,累加第二列数值,打印一二列存入新文件
awk '{if(NR>1)a[$1]+=$2}END{for(i in a)printf "%s\t %d\n",i,a[i]}' querylog* > total ...
- STM8S---选项字节(Option Byte)写操作之IO复用
功能实现目标 通过对选项字节的写操作来实现TIM2的CH3通道的PWM输出IO复用.能够设置为PA3或者PD2输出. 通过STVP方式操作链接 选项字节 选项字节包含芯片硬件特性的配置和存储器 ...
- BeagleBone Black Industrial系统更新设置一贴通
前言 原创文章,转载引用务必注明链接.水平有限,欢迎指正. 本文使用markdown写成,为获得更好的阅读体验,推荐访问我的博客原文: http://www.omoikane.cn/2016/09/1 ...
- 如何卸载centos中自带的Java
首先通过 Java -version 来查看是否已经安装了java 然后通过rpm -qa | grep java 来获得java的版本信息 然后再 用 rpm -e --nodeps [这里依次 ...
- google protocol buffer的原理和使用(一)
一.简单的介绍 Protocol buffers是一个用来序列化结构化数据的技术,支持多种语言诸如C++.Java以及Python语言.能够使用该技术来持久化数据或者序列化成网络传输的数据. ...
- 李洪强iOS开发之 - enum与typedef enum的用法
李洪强iOS开发之 - enum与typedef enum的用法 01 - 定义枚举类型 上面我们就在ViewController.h定义了一个枚举类型,枚举类型的值默认是连续的自然数,例如例子中的T ...
- DSL 如何工作
DSL 如何工作 http://computer.howstuffworks.com/dsl.htm 当你连接到因特网时,你可能是通过一个调制解调器 (modem),或办公室的局域网,或者一个电缆调制 ...
- 【bzoj3620】似乎在梦中见过的样子
枚举左端点,对于每个右端点处理出以右端点为结尾最大长度使得从左端点开始的前缀等于以右端点结束的后缀,即next数组 然后一直往前跳,直到长度小于子串长度的一半为止. #include<algor ...
- 正则表达式pattern的匹配格式
0> 匹配 -------------------------------------------------------------------------------- (pattern) ...