BSOJ我也不知道在哪.

容易想到容斥。

考虑不合法的方案 想到强制某个点的度数为限制即可。

这样就变成了了总方案-一个不合法+两个不合法-3个......的模型了。

坑点 当强制两个相同的点时 方案数为0.

当 序列长度>n-2的时候 方案数为0.

注意一些边界条件啥的。这样的话利用爆搜就很好写了。

const ll MAXN=1000010;
ll n,len,m;
ll ans,fac[MAXN],inv[MAXN];
ll w[MAXN],du[MAXN],vis[MAXN];
inline ll C(ll a,ll b){return a<b?0:fac[a]*inv[b]%mod*inv[a-b]%mod;}
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
inline void dfs(ll x,ll sum,ll cnt,ll v)
{
if(x==m+1)
{
v=v*ksm(n-sum,n-2-cnt)%mod;
if(sum&1)ans=(ans-v)%mod;
else ans=(ans+v)%mod;
return;
}
dfs(x+1,sum,cnt,v);
if(du[x]-1<=n-2-cnt&&!vis[w[x]])
{
vis[w[x]]=1;
dfs(x+1,sum+1,cnt+du[x]-1,v*C(n-2-cnt,du[x]-1)%mod);
vis[w[x]]=0;
}
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(m);fac[0]=1;
rep(1,m,i)get(w[i]),get(du[i]);
rep(1,n,i)fac[i]=fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
dfs(1,0,0,1);putl((ans+mod)%mod);
return 0;
}

BSOJ 5553 wangyurzee的树 prufer序列 容斥的更多相关文章

  1. 【BZOJ4361】isn 动态规划+树状数组+容斥

    [BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...

  2. 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)

    [BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...

  3. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  4. loj#6072 苹果树(折半搜索,矩阵树定理,容斥)

    loj#6072 苹果树(折半搜索,矩阵树定理,容斥) loj 题解时间 $ n \le 40 $ . 无比精确的数字. 很明显只要一个方案不超过 $ limits $ ,之后的计算就跟选哪个没关系了 ...

  5. BSOJ 5445 -- 【2018雅礼】树 prufer序列 dp

    BSOJ在哪我也不知道 没有链接. 对于有标号无根树的统计和有度数限制 一般采用prufer序列. 根据prufer序列 容易知道 某个点的出现次数+1为当前点的度数. 对于这道题 考虑设f[i][j ...

  6. 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)

    4361: isn Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 218  Solved: 126 Description 给出一个长度为n的序列A( ...

  7. 洛谷P5206 [WC2019] 数树(生成函数+容斥+矩阵树)

    题面 传送门 前置芝士 矩阵树,基本容斥原理,生成函数,多项式\(\exp\) 题解 我也想哭了--orz rqy,orz shadowice 我们设\(T1,T2\)为两棵树,并定义一个权值函数\( ...

  8. BZOJ3589 动态树[树剖/暴力/容斥]

    操作0,显然直接线段树解决. 操作1,瓶颈在于重叠的链只算一次.在线段树上来看,如果一个区间被覆盖了,那么只算这个区间,子树里面也就不管了. 考虑对节点打标记来表示是否覆盖.但是,如果统一打完之后,并 ...

  9. 【BZOJ4596】【Luogu P4336】 [SHOI2016]黑暗前的幻想乡 矩阵树定理,容斥

    同样是矩阵树定理的裸题.但是要解决它需要能够想到容斥才可以. \(20\)以内的数据范围一定要试试容斥的想法. #include <bits/stdc++.h> using namespa ...

随机推荐

  1. css伪选择器使用总结——css中关于伪类和伪元素的知识总汇

    CSS 伪类用于向某些选择器添加特殊的效果,而CSS引入伪类和伪元素的概念是为了实现基于文档树之外的信息的格式化.这里讲总结关于css伪类和伪元素的相关使用 伪元素 :before/:before 在 ...

  2. Linux 字符处理之【grep】

    参数: -i: 不区分大小写 -c: 统计包含匹配的行数 -n: 输出行号 -v: 反向匹配 示例文件: (example.txt) The cat's name is Tom, what's the ...

  3. DLL隐式链接

    动态链接库有2种连接方式,一种是通过库直接加入(又叫隐式加载或载入时加载),一种是在运行时加入.后者很好理解,比如LoadLibrary(),GetProcAddress()获取想要引入的函数,使用完 ...

  4. JVM中栈的frames详解

    目录 简介 JVM中的栈 Frame Local Variables本地变量 Operand Stacks Dynamic Linking动态链接 方法执行完毕 简介 我们知道JVM运行时数据区域专门 ...

  5. python 将指定文件夹中的指定文件放入指定文件夹中

    import os import shutil import re #获取指定文件中文件名 def get_filename(filetype): name =[] final_name_list = ...

  6. python--动态网页渲染pyqt5

    原文:https://blog.csdn.net/tymatlab/article/details/78647543 PyQt5 渲染动态网页 示例代码: # -*- coding: UTF-8 -* ...

  7. 【C#】WebService接受跨域请求及返回json数据

    问题概述 通过Web Service发布服务供客户端调用是一种非常简单.方便.快速的手段,并且服务发布后会有一个服务说明页面,直观明了,如图: 一般情况下,在web页面中的JavaScript中调用W ...

  8. 00-Windows系统MySQL数据库的安装

    1.数据库安装 官网下载MySQL数据库. 下载安装包后解压缩到相关目录,我解压缩到:D:\360极速浏览器下载\mysql-8.0.19-winx64. 打开刚刚解压的文件夹 D:\360极速浏览器 ...

  9. Java应用服务器之tomcat部署

    一.相关术语简介 首先我们来了解下tomcat是什么,tomcat是apache软件基金会中的一个项目,由apache.Sun 和其他一些公司及个人共同开发而成.主要作用是提供servlet和jsp类 ...

  10. 集训作业 洛谷P1433 吃奶酪

    嗯?这题竟然是个绿题. 这个题真的不难,不要被他的难度吓到,我们只是不会计算2点之间的距离,他还给出了公式,这个就有点…… 我们直接套公式去求出需要的值,然后普通的搜索就可以了. 这个题我用的深搜,因 ...