Luogu 4091 [HEOI2016/TJOI2016]求和
BZOJ 4555
一道模板题。
第二类斯特林数有公式:
$$S(n, m) = \frac{1}{m!}\sum_{i = 0}^{m}(-1)^i\binom{m}{i}(m - i)^n$$
考虑它的组合意义:$S(n, m)$表示$n$个不相同的小球放到$m$个相同的盒子里而且不能有空盒的方案数。
我们枚举空盒有$i$个,然后进行容斥。因为盒子没有区别,所以最后得到的值还要除以$m!$。
本题要求:
$$\sum_{i = 0}^{n}\sum_{j = 0}^{i}S(i, j)*2^j*(j!)$$
$$=\sum_{j = 0}^{n}2^j*(j!)\sum_{i = 0}^{n}S(i, j)$$
$$=\sum_{j = 0}^{n}2^j*(j!)\sum_{i = 0}^{n}\frac{1}{j!}\sum_{k = 0}^{j}(-1)^k\binom{j}{k}(j - k) ^ i$$
$$=\sum_{j = 0}^{n}2^j\sum_{i = 0}^{n}\sum_{k = 0}^{j}(-1)^k\frac{j!}{k!(j - k)!}*(j - k)^i$$
$$=\sum_{j = 0}^{n}2^j*(j!)\sum_{k = 0}^{j}\frac{(-1^k)}{k!} * \frac{\sum_{i = 0}^{n}(j - k)^i}{(j - k)!}$$
记$f(i) = \frac{(-1^k)}{k!}$,$g(i) = \frac{\sum_{j = 0}^{n}i^j}{(i)!}$,
因为$S(0, 0) = (-1)^0 * 1 * 0^0 = 1$,所以记$g(0) = 1$,$g(1) = n + 1$,剩下代入等比数列求和公式。
那么原式化为
$$\sum_{i = 0}^{n}2^i*(i!)(f*g)(i)$$
做一遍$NTT$就好了。
时间复杂度$O(nlogn)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 3e5 + ;
const ll P = 998244353LL; int n, lim = , pos[N];
ll f[N], g[N], fac[N], inv[N], bin[N]; template <typename T>
inline void swap(T &x, T &y) {
T t = x; x = y; y = t;
} template <typename T>
inline void inc(T &x, T y) {
x += y;
if(x >= P) x -= P;
} inline ll fpow(ll x, ll y) {
ll res = 1LL;
for (; y > ; y >>= ) {
if (y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline void prework() {
int l = ;
for (; lim <= n * ; ++l, lim <<= );
for (int i = ; i < lim; i++)
pos[i] = (pos[i >> ] >> ) | ((i & ) << (l - ));
} inline void ntt(ll *c, int opt) {
for (int i = ; i < lim; i++)
if (i < pos[i]) swap(c[i], c[pos[i]]);
for (int i = ; i < lim; i <<= ) {
ll wn = fpow(, (P - ) / (i << ));
if(opt == -) wn = fpow(wn, P - );
for (int len = i << , j = ; j < lim; j += len) {
ll w = 1LL;
for (int k = ; k < i; k++, w = w * wn % P) {
ll x = c[j + k], y = w * c[j + k + i] % P;
c[j + k] = (x + y) % P, c[j + k + i] = (x - y + P) % P;
}
}
} if (opt == -) {
ll invP = fpow(lim, P - );
for (int i = ; i < lim; i++)
c[i] = c[i] * invP % P;
}
} int main() {
scanf("%d", &n); bin[] = fac[] = 1LL;
for (int i = ; i <= n; i++) {
fac[i] = fac[i - ] * i % P;
bin[i] = bin[i - ] * 2LL % P;
}
inv[n] = fpow(fac[n], P - );
for (int i = n - ; i >= ; i--) inv[i] = inv[i + ] * (i + ) % P; /* for (int i = 0; i <= n; i++)
printf("%lld%c", inv[i] * fac[i] % P, i == n ? '\n' : ' '); */ for (int i = ; i <= n; i++) {
f[i] = ((i & ) ? (-1LL) : (1LL)) * inv[i] % P;
if(f[i] < ) f[i] += P;
if(i == ) g[i] = 1LL;
else if (i == ) g[i] = n + ;
else g[i] = (fpow(i, n + ) - + P) % P * fpow(i - , P - ) % P;
g[i] = g[i] * inv[i] % P;
} prework();
ntt(f, ), ntt(g, );
for (int i = ; i < lim; i++) f[i] = f[i] * g[i] % P;
ntt(f, -); ll ans = 0LL;
for (int i = ; i <= n; i++)
inc(ans, bin[i] * fac[i] % P * f[i] % P); printf("%lld\n", ans);
return ;
}
Luogu 4091 [HEOI2016/TJOI2016]求和的更多相关文章
- BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)
题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...
- 【题解】Luogu P4091 [HEOI2016/TJOI2016]求和
原题传送门 \[\begin{aligned} a n s &=\sum_{i=0}^{n} \sum_{j=0}^{i}\left\{\begin{array}{c}{i} \\ {j}\e ...
- luogu P4091 [HEOI2016/TJOI2016]求和
传送门 这一类题都要考虑推式子 首先,原式为\[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)*2^j*j!\] 可以看成\[f(n)=\sum_{j=0}^{n}2^ ...
- 洛谷 P4091 [HEOI2016/TJOI2016]求和 解题报告
P4091 [HEOI2016/TJOI2016]求和 题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: \[ f(n)=\sum_{i=0}^n\ ...
- 【LG4091】[HEOI2016/TJOI2016]求和
[LG4091][HEOI2016/TJOI2016]求和 题面 要你求: \[ \sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*j! \] 其中\(S\)表示第二类斯特林数,\ ...
- [HEOI2016/TJOI2016]求和(第二类斯特林数)
题目 [HEOI2016/TJOI2016]求和 关于斯特林数与反演的更多姿势\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ Ans&=\sum\l ...
- 【题解】P4091 [HEOI2016/TJOI2016]求和
[题解]P4091 [HEOI2016/TJOI2016]求和 [P4091 HEOI2016/TJOI2016]求和 可以知道\(i,j\)从\(0\)开始是可以的,因为这个时候等于\(0\).这种 ...
- [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)
题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...
- LG4091 【[HEOI2016/TJOI2016]求和】
前置:第二类斯特林数 表示把\(n\)个小球放入\(m\)个不可区分的盒子的方案数 使用容斥原理分析,假设盒子可区分枚举至少有几个盒子为空,得到通项: \[S(n,m)=\frac{1}{m!}\su ...
随机推荐
- envoy 测试试用
备注: 为了简单测试使用的是docker 镜像进行的测试 1. Dockerfile FROM lyft/envoy:latest RUN apt-get update COPY envoy ...
- Windows 特殊文件夹
收藏的XP的一些特殊文件夹,使用方法:在任意位置用以下文件名创建文件夹即可. 目前还有些可以在WIN7下正常使用,以此作为一个存档,便于日后查询. 回收站.{645ff040-5081-101b- ...
- maven打war包后无法依赖本地工程的jar包,造成debug时跳到class文件而不是本地java文件
问题现象:项目结构如下 growup-service | - - - - - -growup-api | - - - - - -growup-core | - - - - - -growup-war ...
- spring mvc从@ResponseBody取到json发现中文乱码
问题背景:如题. 问题定位:代码跟踪,从源头入手,一步一步跟进,直到设置中文编码的地方. 问题代码: /** * 获取单个测试桩接口内容 * * @author wulinfeng * @param ...
- 【转】CentOs中Apache开启rewrite模块详解
rewrite是apache环境的一个伪静态功能了,如果我们没有没让Apache开启rewrite功能,网站上所有的rewrite规则都不可使用. centos的配置文件放在: /etc/httpd/ ...
- JVM之运行时数据区
Java虚拟机运行时数据区包括PC寄存器.Java虚拟机栈.Java堆.方法区.本地方法栈.运行时常量池六个部分. 1. PC寄存器 PC寄存器(又叫程序计数器,Program Counter Reg ...
- 1041 Be Unique
题意:找到一串数字序列中首个出现的不重复的数字. 思路:用哈希,因为数值大小在[1,10^4],所以可以直接开数组.输入数据时记录每个数字出现过的次数.然后遍历原序列,遇到第一个次数为1的数字就是所求 ...
- MySQL router
MySQL Router is a building block for high availability (HA) solutions. It simplifies application dev ...
- 概念与用法-cookie,session,auth (认证系统)
COOKIE 与 SESSION 概念 cookie不属于http协议范围,由于http协议无法保持状态,但实际情况,我们却又需要“保持状态”,因此cookie就是在这样一个场景下诞生. cookie ...
- git的分布式和集中式
当然,Git的优势不单是不必联网这么简单,后面我们还会看到Git极其强大的分支管理,把SVN等远远抛在了后面.