BZOJ 4555

一道模板题。

第二类斯特林数有公式:

$$S(n, m) = \frac{1}{m!}\sum_{i = 0}^{m}(-1)^i\binom{m}{i}(m - i)^n$$

考虑它的组合意义:$S(n, m)$表示$n$个不相同的小球放到$m$个相同的盒子里而且不能有空盒的方案数。

我们枚举空盒有$i$个,然后进行容斥。因为盒子没有区别,所以最后得到的值还要除以$m!$。

本题要求:

$$\sum_{i = 0}^{n}\sum_{j = 0}^{i}S(i, j)*2^j*(j!)$$

$$=\sum_{j = 0}^{n}2^j*(j!)\sum_{i = 0}^{n}S(i, j)$$

$$=\sum_{j = 0}^{n}2^j*(j!)\sum_{i = 0}^{n}\frac{1}{j!}\sum_{k = 0}^{j}(-1)^k\binom{j}{k}(j - k) ^ i$$

$$=\sum_{j = 0}^{n}2^j\sum_{i = 0}^{n}\sum_{k = 0}^{j}(-1)^k\frac{j!}{k!(j - k)!}*(j - k)^i$$

$$=\sum_{j = 0}^{n}2^j*(j!)\sum_{k = 0}^{j}\frac{(-1^k)}{k!} * \frac{\sum_{i = 0}^{n}(j - k)^i}{(j - k)!}$$

记$f(i) = \frac{(-1^k)}{k!}$,$g(i) = \frac{\sum_{j = 0}^{n}i^j}{(i)!}$,

因为$S(0, 0) = (-1)^0 * 1 * 0^0 = 1$,所以记$g(0) = 1$,$g(1) = n + 1$,剩下代入等比数列求和公式。

那么原式化为

$$\sum_{i = 0}^{n}2^i*(i!)(f*g)(i)$$

做一遍$NTT$就好了。

时间复杂度$O(nlogn)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 3e5 + ;
const ll P = 998244353LL; int n, lim = , pos[N];
ll f[N], g[N], fac[N], inv[N], bin[N]; template <typename T>
inline void swap(T &x, T &y) {
T t = x; x = y; y = t;
} template <typename T>
inline void inc(T &x, T y) {
x += y;
if(x >= P) x -= P;
} inline ll fpow(ll x, ll y) {
ll res = 1LL;
for (; y > ; y >>= ) {
if (y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline void prework() {
int l = ;
for (; lim <= n * ; ++l, lim <<= );
for (int i = ; i < lim; i++)
pos[i] = (pos[i >> ] >> ) | ((i & ) << (l - ));
} inline void ntt(ll *c, int opt) {
for (int i = ; i < lim; i++)
if (i < pos[i]) swap(c[i], c[pos[i]]);
for (int i = ; i < lim; i <<= ) {
ll wn = fpow(, (P - ) / (i << ));
if(opt == -) wn = fpow(wn, P - );
for (int len = i << , j = ; j < lim; j += len) {
ll w = 1LL;
for (int k = ; k < i; k++, w = w * wn % P) {
ll x = c[j + k], y = w * c[j + k + i] % P;
c[j + k] = (x + y) % P, c[j + k + i] = (x - y + P) % P;
}
}
} if (opt == -) {
ll invP = fpow(lim, P - );
for (int i = ; i < lim; i++)
c[i] = c[i] * invP % P;
}
} int main() {
scanf("%d", &n); bin[] = fac[] = 1LL;
for (int i = ; i <= n; i++) {
fac[i] = fac[i - ] * i % P;
bin[i] = bin[i - ] * 2LL % P;
}
inv[n] = fpow(fac[n], P - );
for (int i = n - ; i >= ; i--) inv[i] = inv[i + ] * (i + ) % P; /* for (int i = 0; i <= n; i++)
printf("%lld%c", inv[i] * fac[i] % P, i == n ? '\n' : ' '); */ for (int i = ; i <= n; i++) {
f[i] = ((i & ) ? (-1LL) : (1LL)) * inv[i] % P;
if(f[i] < ) f[i] += P;
if(i == ) g[i] = 1LL;
else if (i == ) g[i] = n + ;
else g[i] = (fpow(i, n + ) - + P) % P * fpow(i - , P - ) % P;
g[i] = g[i] * inv[i] % P;
} prework();
ntt(f, ), ntt(g, );
for (int i = ; i < lim; i++) f[i] = f[i] * g[i] % P;
ntt(f, -); ll ans = 0LL;
for (int i = ; i <= n; i++)
inc(ans, bin[i] * fac[i] % P * f[i] % P); printf("%lld\n", ans);
return ;
}

Luogu 4091 [HEOI2016/TJOI2016]求和的更多相关文章

  1. BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)

    题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...

  2. 【题解】Luogu P4091 [HEOI2016/TJOI2016]求和

    原题传送门 \[\begin{aligned} a n s &=\sum_{i=0}^{n} \sum_{j=0}^{i}\left\{\begin{array}{c}{i} \\ {j}\e ...

  3. luogu P4091 [HEOI2016/TJOI2016]求和

    传送门 这一类题都要考虑推式子 首先,原式为\[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)*2^j*j!\] 可以看成\[f(n)=\sum_{j=0}^{n}2^ ...

  4. 洛谷 P4091 [HEOI2016/TJOI2016]求和 解题报告

    P4091 [HEOI2016/TJOI2016]求和 题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: \[ f(n)=\sum_{i=0}^n\ ...

  5. 【LG4091】[HEOI2016/TJOI2016]求和

    [LG4091][HEOI2016/TJOI2016]求和 题面 要你求: \[ \sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*j! \] 其中\(S\)表示第二类斯特林数,\ ...

  6. [HEOI2016/TJOI2016]求和(第二类斯特林数)

    题目 [HEOI2016/TJOI2016]求和 关于斯特林数与反演的更多姿势\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ Ans&=\sum\l ...

  7. 【题解】P4091 [HEOI2016/TJOI2016]求和

    [题解]P4091 [HEOI2016/TJOI2016]求和 [P4091 HEOI2016/TJOI2016]求和 可以知道\(i,j\)从\(0\)开始是可以的,因为这个时候等于\(0\).这种 ...

  8. [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)

    题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...

  9. LG4091 【[HEOI2016/TJOI2016]求和】

    前置:第二类斯特林数 表示把\(n\)个小球放入\(m\)个不可区分的盒子的方案数 使用容斥原理分析,假设盒子可区分枚举至少有几个盒子为空,得到通项: \[S(n,m)=\frac{1}{m!}\su ...

随机推荐

  1. opencv 学习笔记集锦

    整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的.如果有好的资源,也欢迎介绍和分享. 1:OpenCV学习笔记 作者:CSDN数量:55篇博文网址: ...

  2. ASP.NET的几个试题(《C#与.NET程序员面试宝典》)

    更多参考:博客园笔记 :ASP.NET是什么 ASP.NET不是一种语言,而是创建动态Web页的一种强大的服务器端技术,它是Microsoft.NET Framework中一套用于生成Web应用程序和 ...

  3. 十六、python沉淀之路--迭代器

    一.迭代器 1.什么是迭代器协议:对象必须提供一个next方法,执行该方法要返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代(只能往后走,不能往前走). 2.可迭代对象:实 ...

  4. bzoj 1119 [POI2009]SLO && bzoj 1697 [Usaco2007 Feb]Cow Sorting牛排序——思路(置换)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1119 https://www.lydsy.com/JudgeOnline/problem.p ...

  5. 手把手教你在Eclipse中使用CVS Branch功能

    Brach 的作用: 开发新版本的人员就基于 main trunk 工作,而 fix bug 的人员就基于 branch 工作. 一旦在 branch上将 Release_1_0的 bug修复了,我们 ...

  6. android通过查询电话号码获取联系人信息

    // 取得Intent中的頭像 ivShowImage = (ImageView) findViewById(R.id.call_log_detail_contact_img); //通话电话号码获取 ...

  7. Cocoa Pod使用总结

    1. 背景 CocoaPod是Swift,Objective-C语言编写的Cocoa项目的依赖管理工具.简单点说就是它管理了很多的Swift和Objective-C的库,然后通过CocoaPod可以比 ...

  8. Chrome 的审查元素功能有哪些奇技淫巧

    学习地址: https://www.zhihu.com/question/34682699

  9. path设置

    查看 export declare -x HISTCONTROL="ignoredups"declare -x HISTSIZE="1000"declare - ...

  10. git 本地文件里内容 操作记录

    本地环境文件合并分支(以下的都分别 commit提交了的) [一.分支[追加] 和 [新增] 新信息 合并主线  情景] 分支内容: dr.find_element_by_id("su&qu ...