题目背景

SDOi2012

题目描述

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

输入输出格式

输入格式:

一个整数,为N。

输出格式:

一个整数,为所求的答案。

输入输出样例

输入样例#1:
复制

6
输出样例#1: 复制

15

说明

对于60%的数据,0<N<=2^16

对于100%的数据,0<N<=2^32

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
ll N;
ll Phi(ll x) {
ll ans = x;
for (ll i = 2; i <= (ll)sqrt(x); i++) {
if (x%i == 0) {
ans = ans / i * (i - 1);
while (x%i == 0)x /= i;
} }
if (x > 1)ans = ans / x * (x - 1);
return ans;
} int main()
{
// ios::sync_with_stdio(0);
rdllt(N);
ll ans = 0;
for (ll i = 1; i <= sqrt(N); i++) {
if (N%i == 0) {
if (i*i == N) {
ans += Phi(i)*i; continue;
}
else {
ans += Phi(i)*(N / i) + Phi(N / i)*i;
}
}
}
cout << ans << endl;
return 0;
}

[SDOi2012]Longge的问题 BZOJ2705 数学的更多相关文章

  1. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  2. [bzoj 2705][SDOI2012]Longge的问题(数学)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道a ...

  3. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  4. 【bzoj2705】[SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2507  Solved: 1531[Submit][ ...

  5. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  6. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  7. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  8. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  9. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

随机推荐

  1. coprime Sequence

    Do you know what is called ``Coprime Sequence''? That is a sequence consists of nn positive integers ...

  2. namespace mismatch错误处理方法

    在基于axis2进行WebService开发部署时(使用Java客户端调用服务)可能会报namespace mismatch require http://ws.apache.org/axis2 fo ...

  3. js点击按钮获取验证码倒计时

    //发送验证码倒计时 var clock = ''; var nums = 60; var btn; $("#btnGetVerCode").click(function () { ...

  4. 2、python的print函数格式化输出

    1.格式化输出浮点数(float) pi = 3.141592653 print('%10.3f' % pi)  #字段宽10,精度3 ,结果 print('%010.3f' % pi)  #用0填充 ...

  5. Go程序设计3——并发编程

    1 channel 一般channel的声明形式为: var chanName chan ElementType 与一般的变量声明不同的地方仅仅是在类型之前增加了chan关键字.ElementType ...

  6. hibernate使用记录

    1.执行SQL语句而非hql语句,getSession().createQuery(sql2) 执行的是hibernate语句; Query query2 = this.onlineMonitorDa ...

  7. php系统常量

    (1)__FILE__ :php程序文件名.它可以帮助我们获取当前文件在服务器的物理位置. (2)__LINE__ :PHP程序文件行数.它可以告诉我们,当前代码在第几行. (3)PHP_VERSIO ...

  8. 关于instanceof测试遇到的问题

    今天上上课 用 instanceof关键字来判断某个对象是否属于某种数据类型.报错  代码如下 package cn.lijun.demo3; import cn.lijun.demo.Person; ...

  9. JSON不对称反序列化映射方案

    源码Git地址: https://github.com/git-simm/simm-framework.git (欢迎大家提交优化代码 ^_^) 一.业务场景 公司先有业务系统,后来觉得需要抽离公共的 ...

  10. jQuery插件扩展extend的实现原理

    相信每位前端的小伙伴对jQuery都不陌生吧,它最大的魅力之一就是有大量的插件,去帮助我们更轻松的实现各种功能. 前几天晚上,闲来无事,就自己动手写了个简单的jQuery插件,功能很简单,只是让选定的 ...