TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter
learning_rate = 0.01
training_epochs = 10
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 #tf Graph input(only pictures)
X=tf.placeholder("float", [None,n_input]) # hidden layer settings
n_hidden_1 = 256
n_hidden_2 = 128
weights = {
'encoder_h1':tf.Variable(tf.random_normal([n_input,n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input])),
} #定义encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2 #定义decoder
def decoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2 # Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features # Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X # Define loss and optimizer, minimize the squared error cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!")
# # Applying encode and decode over test set
encode_decode = sess.run(
y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
# Compare original images with their reconstructions
f, a = plt.subplots(2, 10, figsize=(10, 2))
plt.title('Matplotlib,AE--Jason Niu')
for i in range(examples_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
plt.show()

TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu的更多相关文章
- TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from t ...
- SA:T1编写主函数法和T2Matlab自带的SA工具箱GUI法,两种方法实现对二元函数优化求解——Jason niu
%SA:T1法利用Matlab编写主函数实现对定义域[-5,5]上的二元函数求最优解—Jason niu [x,y] = meshgrid(-5:0.1:5,-5:0.1:5); z = x.^2 + ...
- TF:利用sklearn自带数据集使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线—Jason niu
import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation impo ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
- TF之RNN:实现利用scope.reuse_variables()告诉TF想重复利用RNN的参数的案例—Jason niu
import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function ...
- TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable—Jason niu
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import te ...
- TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...
- TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...
- TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
随机推荐
- js-循环中判断两次点击是否是同一元素
$(elm).click(function(){ if($(this).attr('num')){ console.log("同一个元素") }else{ for(let i=0; ...
- login_code
#! -*- coding:utf-8 -*-"""http://www.cnblogs.com/weke/articles/6271206.html前置和后置1.set ...
- swift 学习- 12 -- 方法
// 方法 是与某些特定类型相关的函数. 类, 结构体,枚举 都可以定义实例方法, 实例方法为给类型的实例封装了具体的任务与功能. 类, 结构体, 枚举 也可以定义类型方法, 类型方法与类型本身 ...
- HTML&javaSkcript&CSS&jQuery&ajax(四)
一.HTML创建响应设计 Responsive Web Design 可以改变尺寸传递网页,对于平板和移动设备是必须的 1.<!DOCTYPE html><html lang=&qu ...
- 兼容IE浏览器样式的html上传文件控件
最近在公司做项目时需要用到html的上传文件控件,但发现原生的上传文件控件<input type="file" />在IE.Chrome浏览器的显示效果相差很大,为了统 ...
- cf1133 bcdef
b所有数模k,记录出现次数即可 #include<bits/stdc++.h> using namespace std; int main(){ ]; ]={}; cin>>n ...
- 支付宝(查询对账单下载地址(alipay.data.dataservice.bill.downloadurl.query))
通过url下载zip对账单文件,进行解压,读取压缩文件内容. import java.io.BufferedOutputStream; import java.io.BufferedReader; i ...
- yslow V2 准则详细讲解
主要有12条: 1. Make fewer HTTP requests 尽可能少的http请求..我们有141个请求(其中15个JS请求,3个CSS请求,47个CSS background ima ...
- new/new[]和delete/delete[]是如何分配空间以及释放空间的
C++中程序存储空间除栈空间和静态区外,每个程序还拥有一个内存池,这部分内存被称为或堆(heap).程序可以用堆来存储动态分配的对象,即那些在程序运行时创建的对象.动态对象的生存期由程序来控制 ,当动 ...
- HDU 1695 GCD (莫比乌斯反演模板)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...