import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter
learning_rate = 0.01
training_epochs = 10
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 #tf Graph input(only pictures)
X=tf.placeholder("float", [None,n_input]) # hidden layer settings
n_hidden_1 = 256
n_hidden_2 = 128
weights = {
'encoder_h1':tf.Variable(tf.random_normal([n_input,n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input])),
} #定义encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2 #定义decoder
def decoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2 # Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features # Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X # Define loss and optimizer, minimize the squared error cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!")
# # Applying encode and decode over test set
encode_decode = sess.run(
y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
# Compare original images with their reconstructions
f, a = plt.subplots(2, 10, figsize=(10, 2))
plt.title('Matplotlib,AE--Jason Niu')
for i in range(examples_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
plt.show()

TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu的更多相关文章

  1. TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from t ...

  2. SA:T1编写主函数法和T2Matlab自带的SA工具箱GUI法,两种方法实现对二元函数优化求解——Jason niu

    %SA:T1法利用Matlab编写主函数实现对定义域[-5,5]上的二元函数求最优解—Jason niu [x,y] = meshgrid(-5:0.1:5,-5:0.1:5); z = x.^2 + ...

  3. TF:利用sklearn自带数据集使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线—Jason niu

    import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation impo ...

  4. 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据

    1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...

  5. TF之RNN:实现利用scope.reuse_variables()告诉TF想重复利用RNN的参数的案例—Jason niu

    import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function ...

  6. TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable—Jason niu

    # tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import te ...

  7. TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  8. TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  9. TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

随机推荐

  1. Confluence 6 其他 MBeans 和高 CPU 消耗线程

    其他 MBeans 希望监控 Hibernate 和 Hazelcast(仅针对 Confluence 数据中心)你需要在你的 setenv.sh / setenv.bat 文件中添加下面的内容. s ...

  2. Swift可选项

  3. 论文阅读:Review of Visual Saliency Detection with Comprehensive Information

    这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过 ...

  4. 【python】内存调试

    全文拷贝自:http://blog.csdn.net/BaishanCloud/article/details/76422782 问题定位过程解读 gdb-python:搞清楚python程序在做什么 ...

  5. eclipse php pdt插件安装

    安装动态语言工具包: help->new install software->work with 框输入 http://download.eclipse.org/technology/dl ...

  6. 基于“MVC”框架集设计模式,开发用户管理系统!

    MVC----(Model View Controller)设计模型: M:表示业务数据和业务规则.包括DAO(beans).DBHelper(DBHelper),用于封装数据库连接,业务数据库处理. ...

  7. AI学习吧-结算中心

    结算中心流程 在结算中心中,主要是对用户添加到购物车商品的结算,由于用户可能添加了多个课程,但是,结算时会选择性的进行支付.在结算时会选中课程id,和对应的价格策略.在后台,首先会对用户进行校验,验证 ...

  8. 集腋成裘-03-css基础-02

    1.1 三种写法 内嵌式:样式只作用于当前文件,没有真正实现结构表现分离 外链式:作用范围是当前站点,真正实现了内容与表现分离 行内样式:仅限于当前标签,结构混在一起 1.2 标签分类 1.2.1 块 ...

  9. Python函数系列之eval()

    1.作用:将字符串str当成有效的表达式来求值并返回计算结果. 2.语法:eval(source[, globals[, locals]])  3.说明:参数:source:一个Python表达式或函 ...

  10. Html中,id、name、class、type的区别

    <input type="text" name="name" id="name" class="txt"> ...