uoj

bzoj

luogu

sol

根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\)。

由于\(\binom{n\%2}{m\%2}\)的取值只可能是\(0\)或\(1\),以为我们希望\(\binom nm=1\mod 2\),所以\(\binom{n\%2}{m\%2}\)应该始终取值为\(1\)。因为\(\binom 00=\binom 10=\binom 11=1,\binom 01=0\),所以\(\binom{n\%2}{m\%2}\)始终为\(1\)其实就要求了\(n\)在每个二进制位上的值都不小于\(m\)在那位上的值。

这不就是说\(m\)是\(n\)的子集吗?

所以这个题就很简单了吧。枚举子集算当前位的\(dp\)值,复杂度\(O(3^{\log a_i})\)。

这个复杂度假的不行啊。

考虑一些优化。我们相当于是要支持一个数据结构支持插入一个数,或查询某个数的所有子集。上面\(O(3^{\log a_i})\)的做法中,插入和查询一者的复杂度是\(O(3^{\log a_i})\),而另一者是线性的。这样很不优雅,我们考虑尽量均摊这个复杂度。

开桶,记\(t_i\)表示前\(9\)位是\(i\)的前\(9\)位的超集,后\(9\)位与\(i\)的后\(9\)位相同的数之和。这样均摊每\(2^9\)次插入和查询的复杂度是\(O(3^9)\),所以总复杂度就是\(O(6^9)\)。

code

#include<cstdio>
#include<algorithm>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int mod = 1e9+7;
int n,ans,t[1<<18];
void mdf(int x,int y){
int a=x&(~511),b=x&511;(t[b]+=y)%=mod;
for (int c=a;c;c=(c-1)&a) (t[c|b]+=y)%=mod;
}
int qry(int x){
int a=x&(~511),b=(x&511)^511,res=t[a|511];
for (int c=b;c;c=(c-1)&b) (res+=t[a|(c^511)])%=mod;
return res;
}
int main(){
n=gi();
for (int i=1;i<=n;++i){
int a=gi(),f=qry(a)+1;
ans=(ans+f)%mod;mdf(a,f);
}
printf("%d\n",(ans-n+mod)%mod);return 0;
}

[UOJ300][CTSC2017]吉夫特的更多相关文章

  1. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  2. 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp

    题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...

  3. [CTSC2017]吉夫特

    Description: 给定一个序列\(a_1,a_2,a_3...a_n\) 求有多少个不上升子序列: \(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}} ...

  4. BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)

    题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...

  5. uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划

    题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...

  6. bzoj千题计划247:bzoj4903: [Ctsc2017]吉夫特

    http://uoj.ac/problem/300 预备知识: C(n,m)是奇数的充要条件是 n&m==m 由卢卡斯定理可以推出 选出的任意相邻两个数a,b 的组合数计算C(a,b)必须是奇 ...

  7. BZOJ4903: [Ctsc2017]吉夫特

    传送门 可以发现,\(\binom{n}{m}\equiv 1(mod~2)\) 当且仅当 \(m~and~n~=~m\) 即 \(m\) 二进制下为 \(n\) 的子集 那么可以直接写一个 \(3^ ...

  8. [CTSC2017]吉夫特(Lucas定理,DP)

    送70分,预处理组合数是否为偶数即可. 剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数.这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接 ...

  9. loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】

    题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...

随机推荐

  1. D题:数学题(贪心+二分)

    原题大意:原题链接  题解链接 给定两个集合元素,求出两集合间任意两元素相除后得到的新集合中的第k大值 #include<cstdio> #include<algorithm> ...

  2. vue版本,小Toast

    <div id="message" :class="{'show':show_Message}"><p v-html="messag ...

  3. js中 a : function(){}这是什么格式? 代表什么含义?怎样学习这样的格式?

    js中的json. 一种轻量级数据格式.json中的值是map形式的就是key->value. 具体看下边的示例; var person = { // 用 大括号括声明一个json. " ...

  4. Mybatis-plus之RowBounds实现分页查询

    物理分页和逻辑分页 物理分页:直接从数据库中拿出我们需要的数据,例如在Mysql中使用limit. 逻辑分页:从数据库中拿出所有符合要求的数据,然后再从这些数据中拿到我们需要的分页数据. 优缺点 物理 ...

  5. python 去除不可见的控制字符

    尤其是在json load的时候,字符串中的不可见控制字符可能会导致错误,应该先对字符串进行控制字符过滤. 对网页文本同样适用,最好在处理网页文本时先进性控制字符清洗. Replace null by ...

  6. UVa 11374 机场快线

    https://vjudge.net/problem/UVA-11374 题意: 机场快线分为经济线和商业线两种,线路.速度和价格都不同.你有一张商业线车票,可以坐一站商业线,而其他时候只能乘坐经济线 ...

  7. install flask

    pip install flask -i http://pypi.douban.com/simple

  8. BZOJ 3930 【CQOI2015】 选数

    题目链接:选数 这种SB题我都Wa飞了,彻底没救系列- 首先,我们可以发现1,如果我们选了两个不同的数,那么它们的\(\gcd\)不会超过\(r-l+1\).于是,我们可以设一个\(f_i\)表示任取 ...

  9. XML_Qt_资料

    1.QXmlQuery Class _ Qt XML Patterns 5.7.html http://doc.qt.io/qt-5/qxmlquery.html ZC: evaluateTo(QAb ...

  10. redis事务和脚本

    事务,简单理解就是,一组动作,要么全部执行,要么就全部不执行.从而避免出现数据不一致的情况. redis提供了简单的事务功能,将一组需要的命令放到multi和exec两个命令之间.multi代表事务开 ...