洛谷p1072 gcd,质因数分解
/*
可以得a>=c,b<=d,枚举d的质因子p
那么a,b,c,d,x中包含的p个数是ma,mb,mc,md,mx
在gcd(a,x)=c中
ma<mc => 无解
ma=mc => mx>=mc
ma>mc => mx=mc
在lcm(b,x)=d中
mb<md => mx=md
mb=md => mx<=md
mb>md => 无解
那么
ma==mc且mb==md时,mc<=mx<=md
ma>mc时 mx=mc,mb<md时,mx=md
令cntp表示x包含质因子p的方案数
预处理质数,找出所有d的质因子p,计算cntp,如果d自己也是质数,那么计算一次cntd即可
复杂度O(nsqrt(d)/logd)
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll a,b,c,d,x,ma,mb,mc,md,mx,tot,p[];
ll m,prime[],v[];
void init(int n){
memset(v,,sizeof v);
m=;
for(int i=;i<=n;i++){
if(v[i]==){
v[i]=i;
prime[++m]=i;
}
for(int j=;j<=m;j++){
if(prime[j]>v[i] || prime[j]>n/i) break;
v[i*prime[j]]=prime[j];
}
}
}
int divide(int n,int p){
int res=;
while(n%p==)res++,n/=p;
return res;
} int main(){
init(sqrt());//打表
int n;
scanf("%d",&n);
while(n--){
ll ans=,cnt,tot=,flag=;
scanf("%lld%lld%lld%lld",&a,&c,&b,&d);
int tmp=d;
for(int i=;i<=m;i++){//求出d的所有质因子
if(prime[i]>d) break;
if(d%prime[i]==) {
p[++tot]=prime[i];
while(d%prime[i]==) d/=prime[i];
}
}
if(d>)p[++tot]=d; d=tmp;
for(int i=;i<=tot;i++){
ma=divide(a,p[i]);
mb=divide(b,p[i]);
mc=divide(c,p[i]);
md=divide(d,p[i]);
if(ma<mc || mb>md)ans=;//不可能的情况
else if(ma==mc && mb==md){//两者都有多解
if(mc<=md) ans*=(md-mc+);
else ans=;
}
else if(ma==mc && mb<md){//只有一解,可能没有
if(mc>md) ans=;
}
else if(mb==md && ma>mc){
if(mc>md)ans=;
}
else if(mc!=md) ans=; if(ans==) break;
}
printf("%lld\n",ans);
}
}
这是进阶指南第一版的一道题,书上有个推论错了,,
洛谷p1072 gcd,质因数分解的更多相关文章
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
- 洛谷P1072 [NOIP2009] Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷 - P1072 Hankson - 的趣味题 - 质因数分解
https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p ...
- 洛谷P1072 Hankson 的趣味题(题解)
https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[ ...
- 洛谷P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
- 洛谷P2568 GCD(线性筛法)
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
随机推荐
- JavaScript中对象分类
js的对象有三大类,内部对象(本地对象和内置对象).宿主对象和自定义对象 一.内部对象 1.本地对象,ECMAScript提供的需要实例化(new)才能使用的对象: Object.Function.A ...
- js中数组相关的Api
话不多说,直接上图,一眼便知道怎么回事!!! forEach every some sort map filter
- CM记录-迁移JournalNode和Service Monitor超时解决方案
1.迁移JournalNode节点 当你在HDFS服务中新加入一个JournalNode角色时,JournalNode角色需要的数据目录是没有被创建的.但你启用HDFS的HA后,NameNode必须需 ...
- mysql 缓存机制
了解mysql缓存吗(顺丰) mysql缓存机制就是缓存sql 文本及缓存结果,用KV形式保存再服务器内存中,如果运行相同的sql,服务器直接从缓存中去获取结果,不需要在再去解析.优化.执行sql. ...
- bzoj千题计划302:bzoj3160: 万径人踪灭
https://www.lydsy.com/JudgeOnline/problem.php?id=3160 不连续的回文串数量=所有的回文序列数量-连续的回文子串 连续的回文子串: manacher ...
- plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral)出错
ValueError: c of shape (1, 400) not acceptable as a color sequence for x with size 400, y with size ...
- mvc小技巧
1.从Controller后台赋值的html标签显示在前台不起作用的问题?比如后台:ViewData["Message"]="<span style=\" ...
- D - Maximizing Advertising
题目链接:https://cn.vjudge.net/contest/250168#problem/D 题目大意:给你一些点的坐标,这些点属于两个帮派,让你将这些点分进两个不能重叠的矩形中,问你最多两 ...
- python - 系统交互操作(subprocess)
本文摘于云游道士 链接:https://www.cnblogs.com/yyds/p/7288916.html 个人简化,便于查询. 命令行指令的执行通常有两个比较关注的结果: 命令执行的状态码--表 ...
- JQuery中的$.getScript()、$.getJson()和$.ajax()方法
$.getScript() 有时候,在页面初次加载时就取得所需的全部JavaScript文件是完全没有必要的.虽然可以在需要哪个JavaScript文件时,动态地创建<script>标签, ...