传送门

推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西

首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化成\(x^2+y^2=n^2(x>0,y\ge0,x,y\in Z)\)的\((x,y)\)对数\(*4\)

注意到共轭复数之积\((a+bi)(a-bi)=a^2+b^2\),所以改为求\((x+yi)(x-yi)=n^2(x>0,y\ge0,x,y\in Z)\)的方案数

把\(n^2\)分解质因数,得到\(n^2=p_1^{k_1}*p_2^{k_2}...\),有个结论,是除以4剩余1的质数可以拆成两个共轭复数的形式,于是我们就可以继续分解,得到若干对共轭复数和一些质数.现在要分成一对共轭复数,所以所有的质数要平均分在两边,剩下的复数,如果\((x+yi)\)在左边,\((x-yi)\)就要在右边,反之同理.所以答案就是\(4*(\prod (k_i+1)*[p_i\ mod\ 4=1])\)

吗?

不然呢

这里请结合代码思考一下

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5) using namespace std;
const int N=500+10,M=5000+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n;
LL ans=1; int main()
{
n=rd();
int m=sqrt(n);
for(int i=2;i<=m&&n>1;i++)
if(n%i==0)
{
int cn=0;
while(n%i==0) ++cn,n/=i;
if(i%4==1) ans*=cn<<1|1;
}
if(n>1&&n%4==1) ans*=3;
printf("%lld\n",ans<<2);
return 0;
}

推荐阅读xzz_233's sol

luogu P2508 [HAOI2008]圆上的整点的更多相关文章

  1. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  2. 洛谷P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆$ (x^2+y^2=r^2) $,在圆周上有多少个点的坐标是整数. 输入格式 \(r\) 输出格式 整点个数 输入输出样例 输入 4 输出 4 说明/提示 \(n\le 20 ...

  3. P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 复制 4 输出样例#1: 复制 ...

  4. [bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  5. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  6. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  7. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  8. 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Sta ...

  9. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

随机推荐

  1. General Test Scenarios

    1 all mandatory fields should be validated and indicated by askterisk(*) symbol2 validation error me ...

  2. 近端梯度算法(Proximal Gradient Descent)

    L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数.求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的. 考虑一个这样的问题: minx  f(x)+λg(x) x ...

  3. 退役前的记录(2018.10.14-NOIP2018)

    退役前的记录 诸位好,我是\(CJ\)最菜的\(Oier\),已经是\(G2\)的老年选手了,不知道什么时候就会退役了,总之\(G1\ double\)的机会已经没有了,去年因为联赛失利而止步,而今年 ...

  4. Swagger2 配置

    1. 每个请求都需要换取key: @Bean public Docket createRestApi() { //添加head参数start ParameterBuilder appId = new ...

  5. ELK--filebeat命令行参数解释

    ./filebeat 使用-c命令行上的标志设置要加载的配置文件,可以通过重复-c标志来指定多个配置文件, 可以使用覆盖个别设置-E <setting>=<value>.< ...

  6. 洛谷 P1110 [ZJOI2007]报表统计 解题报告

    P1110 [ZJOI2007]报表统计 题目描述 \(Q\)的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小\(Q\)希望可以帮妈妈分担一些工作,作为她的生日礼物之一. 经过仔细 ...

  7. JAVA多线程之中断机制(如何处理中断?)

    一,介绍 这篇文章主要记录使用 interrupt() 方法中断线程,以及如何对InterruptedException进行处理.感觉对InterruptedException异常进行处理是一件谨慎且 ...

  8. intent 几种用法

    Intent 应该算是Android中特有的东西.你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料.都指定好后,只要调用start ...

  9. apk的安装删除

    1,签名: java -jar signapk.jar platform.x509.pem platform.pk8 DownloadProvider.apk DownloadProvider-sig ...

  10. AtCoder Grand Contest 010 D - Decrementing

    题目描述 有n个整数,其中第i个数为Ai.这些数字的gcd为1.两人轮流操作,每次操作把一个大于1的数减1,并把所有数除以所有数的最大公约数,最后无法操作者输,求是否先手必胜. 如果当前的sum为偶数 ...