Matrices and Vectors
Matrices and Vectors
Matrices are 2-dimensional arrays:

A vector is a matrix with one column and many rows:The above matrix has four rows and three columns, so it is a 4 x 3 matrix.

Notation and terms:So vectors are a subset of matrices. The above vector is a 4 x 1 matrix.
- Aij refers to the element in the ith row and jth column of matrix A.
- A vector with 'n' rows is referred to as an 'n'-dimensional vector.
- vi refers to the element in the ith row of the vector.
- In general, all our vectors and matrices will be 1-indexed. Note that for some programming languages, the arrays are 0-indexed.
- Matrices are usually denoted by uppercase names while vectors are lowercase.
- "Scalar" means that an object is a single value, not a vector or matrix.
- R refers to the set of scalar real numbers.
- Rn refers to the set of n-dimensional vectors of real numbers.
Run the cell below to get familiar with the commands in Octave/Matlab. Feel free to create matrices and vectors and try out different things.
% The ; denotes we are going back to a new row.
A = [1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12] % Initialize a vector
v = [1;2;3] % Get the dimension of the matrix A where m = rows and n = columns
[m,n] = size(A) % You could also store it this way
dim_A = size(A) % Get the dimension of the vector v
dim_v = size(v) % Now let's index into the 2nd row 3rd column of matrix A
A_23 = A(2,3)
Addition and Scalar Multiplication
Addition and subtraction are element-wise, so you simply add or subtract each corresponding element:

Subtracting Matrices:

In scalar multiplication, we simply multiply every element by the scalar value:To add or subtract two matrices, their dimensions must be the same.

Experiment below with the Octave/Matlab commands for matrix addition and scalar multiplication. Feel free to try out different commands. Try to write out your answers for each command before running the cell below.In scalar division, we simply divide every element by the scalar value:

Experiment below with the Octave/Matlab commands for matrix addition and scalar multiplication. Feel free to try out different commands. Try to write out your answers for each command before running the cell below.
% Initialize matrix A and B
A = [1, 2, 4; 5, 3, 2]
B = [1, 3, 4; 1, 1, 1] % Initialize constant s
s = 2 % See how element-wise addition works
add_AB = A + B % See how element-wise subtraction works
sub_AB = A - B % See how scalar multiplication works
mult_As = A * s % Divide A by s
div_As = A / s % What happens if we have a Matrix + scalar?
add_As = A + s
Matrix-Vector Multiplication
We map the column of the vector onto each row of the matrix, multiplying each element and summing the result.

An m x n matrix multiplied by an n x 1 vector results in an m x 1 vector.The result is a vector. The number of columns of the matrix must equal the number of rows of the vector.
Below is an example of a matrix-vector multiplication. Make sure you understand how the multiplication works. Feel free to try different matrix-vector multiplications.
% Initialize matrix A
A = [1, 2, 3; 4, 5, 6;7, 8, 9] % Initialize vector v
v = [1; 1; 1] % Multiply A * v
Av = A * v
Matrix-Matrix Multiplication
We multiply two matrices by breaking it into several vector multiplications and concatenating the result.

To multiply two matrices, the number of columns of the first matrix must equal the number of rows of the second matrix.An m x n matrix multiplied by an n x o matrix results in an m x o matrix. In the above example, a 3 x 2 matrix times a 2 x 2 matrix resulted in a 3 x 2 matrix.
For example:
% Initialize a 3 by 2 matrix
A = [1, 2; 3, 4;5, 6] % Initialize a 2 by 1 matrix
B = [1; 2] % We expect a resulting matrix of (3 by 2)*(2 by 1) = (3 by 1)
mult_AB = A*B % Make sure you understand why we got that result
Matrix Multiplication Properties
- Matrices are not commutative: A∗B≠B∗A
- Matrices are associative: (A∗B)∗C=A∗(B∗C)
The identity matrix, when multiplied by any matrix of the same dimensions, results in the original matrix. It's just like multiplying numbers by 1. The identity matrix simply has 1's on the diagonal (upper left to lower right diagonal) and 0's elsewhere.

When multiplying the identity matrix after some matrix (A∗I), the square identity matrix's dimension should match the other matrix's columns. When multiplying the identity matrix before some other matrix (I∗A), the square identity matrix's dimension should match the other matrix's rows
.
% Initialize random matrices A and B
A = [1,2;4,5]
B = [1,1;0,2] % Initialize a 2 by 2 identity matrix
I = eye(2) % The above notation is the same as I = [1,0;0,1] % What happens when we multiply I*A ?
IA = I*A % How about A*I ?
AI = A*I % Compute A*B
AB = A*B % Is it equal to B*A?
BA = B*A % Note that IA = AI but AB != BA
Inverse and Transpose
The inverse of a matrix A is denoted A−1. Multiplying by the inverse results in the identity matrix.
A non square matrix does not have an inverse matrix. We can compute inverses of matrices in octave with the pinv(A) function and in Matlab with the inv(A) function. Matrices that don't have an inverse are singular or degenerate.
The transposition of a matrix is like rotating the matrix 90° in clockwise direction and then reversing it. We can compute transposition of matrices in matlab with the transpose(A) function or A':

In other words:

% Initialize matrix A
A = [1,2,0;0,5,6;7,0,9] % Transpose A
A_trans = A' % Take the inverse of A
A_inv = inv(A) % What is A^(-1)*A?
A_invA = inv(A)*A
Matrices and Vectors的更多相关文章
- RNN 入门教程 Part 2 – 使用 numpy 和 theano 分别实现RNN模型
转载 - Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano 本 ...
- [zt]矩阵求导公式
今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --&g ...
- Applying Eigenvalues to the Fibonacci Problem
http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...
- 图像处理之image stitching
背景介绍 图像拼接是一项应用广泛的图像处理技术.根据特征点的相互匹配,可以将多张小视角的图像拼接成为一张大视角的图像,在广角照片合成.卫星照片处理.医学图像处理等领域都有应用.早期的图像拼接主要是运用 ...
- 对于fmri的设计矩阵构造的一个很直观的解释-by 西南大学xulei教授
本程序意在解释这样几个问题:完整版代码在本文的最后. 1.实验的设计如何转换成设计矩阵? 2.设计矩阵的每列表示一个刺激条件,如何确定它们? 3.如何根据设计矩阵和每个体素的信号求得该体素对刺激的敏感 ...
- Introduction to Gaussian Processes
Introduction to Gaussian Processes Gaussian processes (GP) are a cornerstone of modern machine learn ...
- The Model Complexity Myth
The Model Complexity Myth (or, Yes You Can Fit Models With More Parameters Than Data Points) An oft- ...
- SparkMLlib-----GMM算法
Gaussian Mixture Model(GMM)是一个很流行的聚类算法.它与K-Means的很像,但是K-Means的计算结果是算出每个数据点所属的簇,而GMM是计算出这些数据点分配到各个类别的 ...
- Machine-learning of Andrew Ng(Stanford University)
1.基础概念 机器学习是一门研究在非特定编程条件下让计算机采取行动的学科.最近二十年,机器学习为我们带来了自动驾驶汽车.实用的语音识别.高效的网络搜索,让我们对人类基因的解读能力大大提高.当今机器学习 ...
随机推荐
- Caused by: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Table 'zhongfucheng.user' does
编写第一个Hibernate程序的时候,就发现出现了错误 Exception in thread "main" org.hibernate.exception.SQLGrammar ...
- Java实现3DES加密--及ANSI X9.8 Format标准 PIN PAN获取PIN BlOCK
1, 采用银联ANSI X9.8标准 PIN xor PAN获取PIN BlOCK 2, 采用3Des进行加密 参考: des和3Des加密算法实现 要点:因为3DES是对称加密算法,key是24位, ...
- Java简单实用方法一
整理以前的笔记,在学习Java时候,经常会用到一些方法.虽然简单但是经常使用.因此做成笔记,方便以后查阅 这篇博文先说明构造和使用这些方法. 1,判断String类型数据是否为空 String类型的数 ...
- StringBuffer类的构造方法
public StringBuffer():无参构造方法 public StringBuffer(int capacity):指定容量的字符串缓冲区对象(默认是16个字符) public String ...
- springmvc 格式化返回日期格式
<mvc:annotation-driven conversion-service="conversionService"> <mvc:message-conve ...
- 如何写一个jquery插件
本文总结整理一下如何写一个jquery插件?虽然现今各种mvvm框架异常火爆,但是jquery这个陪伴我们成长,给我们带来很多帮助的优秀的库不应该被我们抛弃,写此文章,作为对以往欠下的笔记的补充, ...
- 网时|细数被鹿晗热点效应带火的心机boy们
今天上班早高峰的地铁格外的宽敞,不知道是不是因为大家都被鹿晗关晓彤的甜蜜暴击到已经忘了上班这码事了.本以为是为了新戏<甜蜜暴击>做宣传,结果工作室都相继承认,他们倒是甜蜜了,暴击全给粉丝了 ...
- Python操作excel表格
用Python操作Excel在工作中还是挺常用的,因为毕竟不懂Excel是一个用户庞大的数据管理软件 注:本篇代码在Python3环境下运行 首先导入两个模块xlrd和xlwt,xlrd用来读取Exc ...
- zoj3204 connect them 最小生成树 暴力
Connect them Time Limit: 1 Second Memory Limit:32768 KB You have n computers numbered from 1 to ...
- HDU1201 水题
做多了年月日,现在基本就能水过了 18岁生日 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...