import pandas as pd

df = pd.DataFrame( {"林大明":[65,92,78,83,70], "陈聪明":[90,72,76,93,56], "黄美丽":[81,85,91,89,77], "熊小娟":[79,53,47,94,80] } )
print(df)

import pandas as pd

datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)

import pandas as pd

datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
indexs[0] = "林晶辉"
df.index = indexs
columns[3] = "理化"
df.columns = columns
print(df)

import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print('df["自然"] ->')
print(df["自然"])
print()
print('df[["语文", "数学", "自然"] ->')
print(df[["语文", "数学", "自然"]])
print()
print('df[df.数学>=80] ->')
print(df[df.数学 >= 80])

import pandas as pd

datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print("df.values:")
print(df.values)
print("陈聪明的成绩(df.values[1]):")
print(df.values[1])
print("陈聪明的英文成绩(df.values[1][2]):")
print(df.values[1][2])

import pandas as pd

datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('df.loc["陈聪明", :] ->')
print(df.loc["陈聪明", :])
#print(df.loc["陈聪明"])
print()
print('df.loc["陈聪明"]["数学"] ->')
print(df.loc["陈聪明"]["数学"])
print()
print('df.loc[("陈聪明", "熊小娟") ->')
print(df.loc[("陈聪明", "熊小娟"), :])
print()
print('df.loc[:, "数学"] ->')
print(df.loc[:, "数学"])
print()
print('df.loc[("陈聪明", "熊小娟"), ("数学", "自然")] ->')
print(df.loc[("陈聪明", "熊小娟"), ("数学", "自然")])
print()
print('df.loc["陈聪明":"熊小娟", "数学":"社会"] ->')
print(df.loc["陈聪明":"熊小娟", "数学":"社会"])
print()
print('df.loc[:黄美丽, "数学":"社会"] ->')
print(df.loc[:"黄美丽", "数学":"社会"])
print()
print('df.loc["陈聪明":, "数学":"社会"] ->')
print(df.loc["陈聪明":, "数学":"社会"])

import pandas as pd

datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('df.iloc[1, :] ->')
print(df.iloc[1, :])
print()
print('df.iloc[1][1] ->')
print(df.iloc[1][1])

import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('陈聪明的数学科成绩 ->')
print(df.ix["陈聪明"]["数学"])
print(df.ix["陈聪明"][1])
print(df.ix[1]["数学"])
print(df.ix[1][1])

import pandas as pd

datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('最前 2 位学生成绩 ->')
print(df.head(2))
print()
print('最后 2 位学生成绩 ->')
print(df.tail(2))

import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('df.ix["陈聪明"]["数学"] (原始):' + str(df.loc["陈聪明"]["数学"]))
df.ix["陈聪明"]["数学"] = 91
print('df.ix["陈聪明"]["数学"] (修改):' + str(df.loc["陈聪明"]["数学"]))
print()
print('df.ix["陈聪明", :] ->')
df.ix["陈聪明", :] = 80
print(df.ix["陈聪明", :])

import pandas as pd

datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('按照数学成绩降序排序 ->')
df1 = df.sort_values(by="数学", ascending=False)
print(df1)
print()
print('按照列标题升序排序 ->')
df2 = df.sort_index(axis=0)
print(df2)
print()

import pandas as pd
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
print(df)
print('删除陈聪明成绩 ->')
df1 = df.drop("陈聪明")
print(df1)
print()
print('删除数学成绩 ->')
df2 = df.drop("数学", axis=1)
print(df2)
print()
print('删除数学及自然成绩 ->')
df3 = df.drop(["数学", "自然"], axis=1)
print(df3)
print()
print('删除从陈聪明到熊小娟成绩 ->')
df4 = df.drop(df.index[1:4])
print(df4)
print()
print('删除从数学到自然的成绩 ->')
df5 = df.drop(df.columns[1:4], axis=1)
print(df5)
print()

import pandas as pd

dt = pd.read_html("http://www.86pm25.com/city/beijing.html")
data=dt[0]
print(data)

import pandas as pd

tables = pd.read_html("http://value500.com/M2GDP.html")
n = 1
for table in tables:
print("第 " + str(n) + " 个表格:")
print(table.head())
print()
n += 1

import pandas as pd

tables = pd.read_html("http://value500.com/M2GDP.html")
table = tables[18]
table = table.drop(table.index[0:1])
table.columns = ["年份", "M2指标", "GDP绝对额", "M2/GDP"]
table.index = range(len(table.index))
print(table)

import pandas as pd
from pylab import *
rcParams['font.sans-serif'] = ['SimHei'] #设置中文显示
datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]]
indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"]
columns = ["语文", "数学", "英文", "自然", "社会"]
df = pd.DataFrame(datas, columns=columns, index=indexs)
df.plot()

def rbCity(): #单击区县按钮的处理函数
global sitelist, listradio
sitelist.clear() #清除原有监测站点列表
for r in listradio: #删除原有监测站点按钮
r.destroy()
n=0
for c1 in data["监测站点"]: #逐一取出所选区县市的监测站点
if(c1 == city.get()):
sitelist.append(data.ix[n, 1])
n += 1
sitemake() #生成测站点按钮
rbSite() #显示PM2.5数值

def rbSite(): #单击监测站按钮后的处理函数
n = 0
for s in data.ix[:,1]: #逐一取得监测站点
if(s == site.get()): #如果某监测站点名称与选中的监测站点相同,则
pm = data.ix[n][ "PM2.5浓度"] #取得该站点的PM2.5数值
print(pm)
pm=pm[:-5] #去除数据后面的5位单位字符
pm=int(pm) #把PM2.5的字符型数据转为整型
if(pd.isnull(pm)): #如果没有数据,则
result1.set(s + "站的 PM2.5 值当前无数据!") #显示无数据
else: #如果有数据,则
if(pm <= 35): #转换为空气质量等级
grade1 = "优秀"
elif(pm <= 53):
grade1 = "良好"
elif(pm <= 70):
grade1 = "中等"
else:
grade1 = "差"
result1.set(s + "站的 PM2.5 值为" + str(pm) + ";" + grade1 )
break #找到选中的监测站点的数据后就跳出循环
n += 1

def clickRefresh(): #重新读取数据
global data
df = pd.read_html("http://www.86pm25.com/city/beijing.html")
data=df[0]
rbSite() #更新监测站点的数据

def sitemake(): #建立监测站点按钮
global sitelist, listradio
for c1 in sitelist: #逐一建立按钮
rbtem = tk.Radiobutton(frame2, text=c1, variable=site, value=c1, command=rbSite) #建立单选按钮
listradio.append(rbtem) #插入至按钮列表
if(c1==sitelist[0]): #默认选取第1个按钮
rbtem.select()
rbtem.pack(side="left") #靠左对齐

import tkinter as tk
import pandas as pd

df = pd.read_html("http://www.86pm25.com/city/beijing.html")
data=df[0]
win=tk.Tk()
win.geometry("640x270")
win.title("PM2.5 实时监测")
city = tk.StringVar() #区县名称变量
site = tk.StringVar() #监测站点名称变量
result1 = tk.StringVar() #显示信息变量
citylist = [] #区县列表
sitelist = [] #监测站点列表
listradio = [] #区县按钮列表
#建立区县列表
for c1 in data["监测站点"]:
if(c1 not in citylist): #如果列表中不存在该县区就将该县区名称插入列表
citylist.append(c1)
#建立第1个区县的监测站点列表
count = 0
for c1 in data["监测站点"]:
if(c1 == citylist[0]): #如果是第1个区县,则
sitelist.append(data.ix[count, 1]) #把该区县的所有监测站点插入到监测站点列表
count += 1
label1 = tk.Label(win, text="区县:", pady=6, fg="blue", font=("新细明体", 12))
label1.pack()
frame1 = tk.Frame(win) #区县容器
frame1.pack()
for i in range(0,2): #按钮分2行
for j in range(0,8): #每行8个
n = i * 8 + j #第n个按钮
if(n < len(citylist)):
city1 = citylist[n] #取得区县名称
rbtem = tk.Radiobutton(frame1, text=city1, variable=city, value=city1, command=rbCity) #建立单选按钮
rbtem.grid(row=i, column=j) #设置按钮的位置
if(n==0): #选取第1个区县
rbtem.select()
label2 = tk.Label(win, text="监测站点:", pady=6, fg="blue", font=("新细明体", 12))
label2.pack()
frame2 = tk.Frame(win) #监测站点容器
frame2.pack()
sitemake()
btnDown = tk.Button(win, text="更新数据", font=("新细明体", 12), command=clickRefresh)
btnDown.pack(pady=6)
lblResult1 = tk.Label(win, textvariable=result1, fg="red", font=("新细明体", 16))
lblResult1.pack(pady=6)
rbSite() #显示测站讯息
win.mainloop()

def rbCity(): #點選縣市選項按鈕後處理函式
global sitelist, listradio
sitelist.clear() #清除原有測站串列
for r in listradio: #移除原有測站選項按鈕
r.destroy()
n=0
for c1 in data["County"] == city.get(): #逐一取出選取縣市的測站
if(c1 == True):
sitelist.append(data.ix[n, 0])
n += 1
sitemake() #建立測站選項按鈕
rbSite() #顯示PM2.5訊息

def rbSite(): #點選測站選項按鈕後處理函式
n = 0
for s in data.ix[:, 0]: #逐一取得測站
if(s == site.get()): #取得點選的測站
pm = data.ix[n, "PM2.5"] #取得PM2.5的值
if(pd.isnull(pm)): #如果沒有資料
result1.set(s + "站的 PM2.5 值目前無資料!")
else: #如果有資料
if(pm <= 35): #轉換為等級
grade1 = "低"
elif(pm <= 53):
grade1 = "中"
elif(pm <= 70):
grade1 = "高"
else:
grade1 = "非常高"
result1.set(s + "站的 PM2.5 值為「" + str(pm) + "」:「" + grade1 + "」等級")
break #找到點選測站就離開迴圈
n += 1

def clickRefresh(): #重新讀取資料
global data
# data = pd.read_csv("http://opendata.epa.gov.tw/ws/Data/REWXQA/?$orderby=SiteName&$skip=0&$top=1000&format=csv")
data = pd.read_csv("F:\\pythonBase\\pythonex\\ch09\\AQX_20160927145712.csv")
rbSite() #更新測站資料

def sitemake(): #建立測站選項按鈕
global sitelist, listradio
for c1 in sitelist: #逐一建立選項按鈕
rbtem = tk.Radiobutton(frame2, text=c1, variable=site, value=c1, command=rbSite) #建立選項按鈕
listradio.append(rbtem) #加入選項按鈕串列
if(c1==sitelist[0]): #預設選取第1個項目
rbtem.select()
rbtem.pack(side="left") #靠左排列

import tkinter as tk
import pandas as pd

# data = pd.read_csv("http://opendata.epa.gov.tw/ws/Data/REWXQA/?$orderby=SiteName&$skip=0&$top=1000&format=csv")
data = pd.read_csv("F:\\pythonBase\\pythonex\\ch09\\AQX_20160927145712.csv")

win=tk.Tk()
win.geometry("640x270")
win.title("PM2.5 實時監測")

city = tk.StringVar() #縣市文字變數
site = tk.StringVar() #測站文字變數
result1 = tk.StringVar() #訊息文字變數
citylist = [] #縣市串列
sitelist = [] #鄉鎮串列
listradio = [] #鄉鎮選項按鈕串列

#建立縣市串列
for c1 in data["County"]:
if(c1 not in citylist): #如果串列中無該縣市就將其加入
citylist.append(c1)
#建立第1個縣市的測站串列
count = 0
for c1 in data["County"]:
if(c1 == citylist[0]): #是第1個縣市的測站
sitelist.append(data.ix[count, 0])
count += 1

label1 = tk.Label(win, text="縣市:", pady=6, fg="blue", font=("新細明體", 12))
label1.pack()
frame1 = tk.Frame(win) #縣市容器
frame1.pack()
for i in range(0,3): #3列選項按鈕
for j in range(0,8): #每列8個選項按鈕
n = i * 8 + j #第n個選項按鈕
if(n < len(citylist)):
city1 = citylist[n] #取得縣市名稱
rbtem = tk.Radiobutton(frame1, text=city1, variable=city, value=city1, command=rbCity) #建立選項按鈕
rbtem.grid(row=i, column=j) #設定選項按鈕位置
if(n==0): #選取第1個縣市
rbtem.select()

label2 = tk.Label(win, text="測站:", pady=6, fg="blue", font=("新細明體", 12))
label2.pack()
frame2 = tk.Frame(win) #測站容器
frame2.pack()
sitemake()

btnDown = tk.Button(win, text="更新資料", font=("新細明體", 12), command=clickRefresh)
btnDown.pack(pady=6)
lblResult1 = tk.Label(win, textvariable=result1, fg="red", font=("新細明體", 16))
lblResult1.pack(pady=6)
rbSite() #顯示測站訊息

win.mainloop()

吴裕雄 实战PYTHON编程(8)的更多相关文章

  1. 吴裕雄 实战PYTHON编程(10)

    import cv2 cv2.namedWindow("frame")cap = cv2.VideoCapture(0)while(cap.isOpened()): ret, im ...

  2. 吴裕雄 实战PYTHON编程(9)

    import cv2 cv2.namedWindow("ShowImage1")cv2.namedWindow("ShowImage2")image1 = cv ...

  3. 吴裕雄 实战PYTHON编程(7)

    import os from win32com import client word = client.gencache.EnsureDispatch('Word.Application')word. ...

  4. 吴裕雄 实战PYTHON编程(6)

    import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['Simhei']plt.rcParams['axes.unicode ...

  5. 吴裕雄 实战PYTHON编程(5)

    text = '中华'print(type(text))#<class 'str'>text1 = text.encode('gbk')print(type(text1))#<cla ...

  6. 吴裕雄 实战PYTHON编程(4)

    import hashlib md5 = hashlib.md5()md5.update(b'Test String')print(md5.hexdigest()) import hashlib md ...

  7. 吴裕雄 实战python编程(3)

    import requests from bs4 import BeautifulSoup url = 'http://www.baidu.com'html = requests.get(url)sp ...

  8. 吴裕雄 实战python编程(2)

    from urllib.parse import urlparse url = 'http://www.pm25x.com/city/beijing.htm'o = urlparse(url)prin ...

  9. 吴裕雄 实战python编程(1)

    import sqlite3 conn = sqlite3.connect('E:\\test.sqlite') # 建立数据库联接cursor = conn.cursor() # 建立 cursor ...

随机推荐

  1. WebClient类

    WebClient类提供向 URI 标识的资源发送数据和从 URI 标识的资源接收数据的公共方法. 其实就相当于创建一个请求客户端.可以获取网页和各种各样的信息,包括交互. 通过MSDN来看看WebC ...

  2. C# 中的 enum(枚举) 类型使用例子

    一.需要根据数字获取中文名称,C# 代码里面出现if 或switch 判断语句,比如下面的类为test1.class //获取计算类型的值 string AggregateType = string. ...

  3. R(7): data.table

    这个包让你可以更快地完成数据集的数据处理工作.放弃选取行或列子集的传统方法,用这个包进行数据处理.用最少的代码,你可以做最多的事.相比使用data.frame,data.table可以帮助你减少运算时 ...

  4. 小峰servlet/jsp(7)jstl国际化标签库、sql标签库等

    一.jstl国际化标签库: fmt:setLocale 设定用户所在的区域: fmt:formatDate   对日期进行格式化 fmt:requestEncoding 设置所有的请求编码; fmt: ...

  5. unittest框架进坑系列_(含selenium数据分离的坑)

    1.测试用例的执行顺序 有默认的顺序的,不是按你自己的排列执行,注意. 进坑原因,没有先执行制造变量的测试用例,导致其他用例无法找到变量值 2.数据分离的坑 在控制层 有函数嵌套,2个函数都必须带se ...

  6. TraceLog.cs 累积 C#

    using System; using System.Collections.Generic; using System.Text; using System.IO; using System.Dia ...

  7. 一次JVM内存调整

    单台服务器8G内存,2核 系统里装了redis, rocketmq, mysql, zookeeper, 还有20个左右的微服务,每个微服务的jvm 参数 -Xms128m -Xmx256m -Xmn ...

  8. python 正则表达式的处理

    1.基本用法 #!/usr/bin/env python # coding=utf-8 import re # example 1 text ="fjsk test\t fjskd bar\ ...

  9. Git强制拉取覆盖本地 Pull force

    git fetch --all git reset --hard origin/master git pull 单条执行 git fetch --all && git reset -- ...

  10. 【Unix网络编程】 chapter5 TCP客户,服务器程序实例

    chapter5 5.1 概述 5.2 TCP回射服务器程序:main函数 int main(int argc, char **argv) { int listenfd,connfd; pid_t c ...