[ Luogu 3709 ] 大爷的字符串题
\(\\\)
Description
原题题面太过混乱出题人语文凉凉
给出一个长为 \(n\) 的数列 \(A\) ,多次询问:
对于一个区间 \([L_i,R_i]\),把区间内的所有数最少划分成多少个数集,使得每一个集合内没有相同元素。
- \(A_i\le 10^9,n,m\le 2\times 10^5\)
\(\\\)
Solution
题目的模型很容易转化成区间众数问题。
莫队求解区间众数。
首先数据范围是假的,离散化之后就开的下桶了。
对于区间扩张,肯定是加一下桶,然后跟当前答案取 \(max\) 。
问题在于区间缩小时,删除一个数怎么搞。
\(\\\)
开始有一个 too simple 想法,是用堆去维护当前答案区间内所有数出现个数,然后懒惰删除法,每次更新时判断一下堆顶是否正确。
想一想是对的,但是 \(O(N\sqrt NlogN)\) 的复杂度对于 \(2\times 10^5\) 很吃力。
\(\\\)
一个机智的做法。
设 \(cnt[i]\) 表示 \(bkt[x]=i\) 的个数,也就是当前区间里出现次数为 \(i\) 的数的个数。
空间没有问题,因为最多出现数列长度的次数。
这样一来修改就容易了很多,减的时候只需要判断一下,当前数对应的 \(cnt\) 是否 \(>1\) 即可。
注意加减是对 \(cnt\) 和 \(bkt\) 的同时更新。
\(\\\)
Code
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 200000
#define R register
#define gc getchar
using namespace std;
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
int n,m,ans,bl[N],cnt[N],bkt[N],s[N],tmp[N];
struct Q{int l,r,ans,id;}q[N];
inline bool cmp1(Q x,Q y){
return bl[x.l]==bl[y.l]?x.r<y.r:bl[x.l]<bl[y.l];
}
inline bool cmp2(Q x,Q y){return x.id<y.id;}
inline void add(int p){
--cnt[bkt[s[p]]];
++cnt[++bkt[s[p]]];
ans=max(ans,bkt[s[p]]);
}
inline void del(int p){
--cnt[bkt[s[p]]];
if(ans==bkt[s[p]]&&!cnt[bkt[s[p]]]) --ans;
++cnt[--bkt[s[p]]];
}
int main(){
n=rd(); m=rd();
int t=sqrt(n),tot=0;
for(R int i=1,cntt=1;i<=n;++i){
tmp[i]=s[i]=rd();
if(i%t==0) ++cntt;
bl[i]=cntt;
}
sort(tmp+1,tmp+1+n);
for(R int i=1;i<=n;++i){
tmp[++tot]=tmp[i];
while(tmp[i+1]==tmp[i]&&i<=n) ++i;
}
for(R int i=1;i<=n;++i) s[i]=lower_bound(tmp+1,tmp+1+tot,s[i])-tmp;
for(R int i=1;i<=m;++i){
q[i].l=rd(); q[i].r=rd(); q[i].id=i;
}
sort(q+1,q+1+m,cmp1);
bkt[s[1]]=cnt[1]=ans=1;
int nowl=1,nowr=1;
for(R int i=1;i<=m;++i){
while(nowl<q[i].l){del(nowl);++nowl;}
while(nowl>q[i].l){--nowl;add(nowl);}
while(nowr>q[i].r){del(nowr);--nowr;}
while(nowr<q[i].r){++nowr;add(nowr);}
q[i].ans=ans;
}
sort(q+1,q+1+m,cmp2);
for(R int i=1;i<=m;++i) printf("%d\n",-q[i].ans);
return 0;
}
[ Luogu 3709 ] 大爷的字符串题的更多相关文章
- luogu 3709 大爷的字符串题 构造 莫队 区间众数
题目链接 题目描述 给你一个字符串a,每次询问一段区间的贡献 贡献定义: 每次从这个区间中随机拿出一个字符\(x\),然后把\(x\)从这个区间中删除,你要维护一个集合S 如果\(S\)为空,你\(r ...
- luogu P3709 大爷的字符串题
二次联通门 : luogu P3709 大爷的字符串题 /* luogu P3709 大爷的字符串题 莫队 看了半天题目 + 题解 才弄懂了要求什么... 维护两个数组 一个记录数字i出现了几次 一个 ...
- 【luogu P3709 大爷的字符串题】 题解
题目链接:https://www.luogu.org/problemnew/show/P3709 离散化+区间众数..? #include <iostream> #include < ...
- P3709 大爷的字符串题 (莫队)
题目 P3709 大爷的字符串题 题意:求\([l,r]\)中众数的个数. 解析 维护两个数组: \(cnt[x]\),数\(x\)出现的次数. \(sum[x]\),出现次数为\(x\)的数的个数. ...
- AC日记——大爷的字符串题 洛谷 P3709
大爷的字符串题 思路: 莫队,需开O2,不开50: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 20000 ...
- P3709 大爷的字符串题(莫队+结论)
题目 P3709 大爷的字符串题 做法 有一个显然的结论:一段区间里最小答案为众数的个数 用莫队来离线求众数 \(tmp_i\)表示出现\(i\)次的数的个数,\(num_i\)表示\(i\)出现的次 ...
- 洛谷 P3709 大爷的字符串题
https://www.luogu.org/problem/show?pid=3709 题目背景 在那遥远的西南有一所学校 /*被和谐部分*/ 然后去参加该省省选虐场 然后某蒟蒻不会做,所以也出了一个 ...
- 洛谷P3709 大爷的字符串题(莫队)
题目背景 在那遥远的西南有一所学校 /*被和谐部分*/ 然后去参加该省省选虐场 然后某蒟蒻不会做,所以也出了一个字符串题: 题目描述 给你一个字符串a,每次询问一段区间的贡献 贡献定义: 每次从这个区 ...
- P3709 大爷的字符串题(50分)
题目背景 在那遥远的西南有一所学校 /*被和谐部分*/ 然后去参加该省省选虐场 然后某蒟蒻不会做,所以也出了一个字符串题: 题目描述 给你一个字符串a,每次询问一段区间的贡献 贡献定义: 每次从这个区 ...
随机推荐
- react native 中的ListView
ListView 的运用: 1.首先在react native中引入这个组件: 2.初始化的ListView 的相关属性: constructor(props) { super(props); con ...
- ZOJ3469 Food Delivery —— 区间DP
题目链接:https://vjudge.net/problem/ZOJ-3469 Food Delivery Time Limit: 2 Seconds Memory Limit: 6553 ...
- 多态、抽象类、接口、区别(java基础知识九)
1.多态的概述以及代码体现 * A:多态概述 * 事物存在的多种形态 * B:多态前提 * a:要有继承关系. * 一个类是父类,一个类是子类 * b:要有方法重写. * c:要有父类引用指向子类对象 ...
- Maze 解题报告
Maze Description You are given a special Maze described as an n*m matrix, please find the shortest ...
- 创建一个Windows Service 程序
1.新建Windows项目,选择"Windows服务"类型的项目. 2.在生成的Service1.cs中代码中写你需要的代码,如下: using System; using Sys ...
- Educational Codeforces Round 23
A题 分析:注意两个点之间的倍数差,若为偶数则为YES,否则为NO #include "iostream" #include "cstdio" #include ...
- 【转】cocos2dx 内存管理机制
原文地址: http://www.zaojiahua.com/memory-management.html cocos2dx采用的是在堆上分配内存空间,想想看你在写程序的时候对于cocos2dx中的类 ...
- codeforces 724C
在一个nxm的镜面二维空间内,向(1,1)发射一条射线,来回反射,当遇到四个角之一时光线消失. 给K个点,问K个点第一次被射中是什么时候(v = sqrt(2)) 解:注意到只有 2*(n+m)个对角 ...
- 爱奇艺面试Python,竟然挂在第5轮……
今天给大家分享我曾经在爱奇艺的面试,过程还是比较有意思的,可以给大家一些参考 聊骚阶段 嗲妹妹:你好,我是爱奇艺的HR,我们正在招聘运维开发岗位,请问您最近有在看工作机会吗? 我:(这声音也太酥了吧我 ...
- python 可迭代对象与迭代器之间的转换
列表: >>> l = [1, 2, 3, 4] >>> l_iter = iter(l) >>> l_iter <list_iterato ...