LightOJ 1375 - LCM Extreme 莫比乌斯反演或欧拉扩展
**题意:**给出n [1,3*1e6] 求
并模2^64。
**思路:**先手写出算式
观察发现可以化成
那么关键在于如何求得i为1~n的lcm(i,n)之和。可以知道lcm(a,b)为ab/gcd(a,b)
变换得(a/gcd) * (b/gcd)gcd 由于GCD的性质,可以知道a/gcd 与 b/gcd是互质的两个质数。由此可以想到应用欧拉函数,并且由性质能够证明 n*phi(n)/2为小于n所有与n互质数之和(证明:已知一个质数p那么显然n-p与它互质,那么phi(n)中有phi(n)/2对数,每对数和为n)
故 
设n/gcd(I,n)为d则 
由此题目化成枚举d即可。还需注意格式的控制转换,本题需要模2^64 只需设unsigned long long 溢出即模,内存限制是刚好卡住的。
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#define LL unsigned long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e6+10;
int eul[3*N];
LL fa[3*N];
LL ans[3*N];
void eular()
{
MMF(eul);
MMF(fa);
eul[1] = 1;
for(int i = 2; i < 3*N; i++)
{
if(!eul[i])
{
for(int j = i; j < 3*N; j+=i)
{
if(!eul[j])
eul[j] = j;
eul[j] = eul[j]/i * (i-1);
}
}
}
ans[0] = ans[1] = 0;
for(LL i = 2; i < 3*N; i++)
{
for(LL j = i; j < 3*N; j += i)
{
LL t = j * eul[i] / 2;
fa[j] += i* t;
}
ans[i] = ans[i-1] + fa[i];
}
}
int main()
{
eular();
int T;
int cnt = 0;
scanf("%d", &T);
while(T--)
{
LL n;
scanf("%llu", &n);
printf("Case %d: %llu\n", ++cnt, ans[n]);
//printf("%d\n",eul[3000000]);
}
return 0;
}
/*
5
2
10
13
100000
3000000
**/
LightOJ 1375 - LCM Extreme 莫比乌斯反演或欧拉扩展的更多相关文章
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)
[BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)
题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...
- JZYZOJ 1375 双亲数 莫比乌斯反演
http://172.20.6.3/Problem_Show.asp?id=1375 网上搜推理图. 有一段没有写莫比乌斯反演都快忘了..数学能力--,定理完全不会推,但是这道题整体来说应该是比较好写 ...
- 洛谷 - SP3871 GCDEX - GCD Extreme - 莫比乌斯反演
易得 $\sum\limits_{g=1}^{n} g \sum\limits_{k=1}^{n} \mu(k) \lfloor\frac{n}{gk}\rfloor \lfloor\frac{n}{ ...
- BZOJ2694 Lcm 【莫比乌斯反演】
BZOJ2694 Lcm Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample I ...
- [NOI2010]能量采集 BZOJ2005 数学(反演)&&欧拉函数,分块除法
题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...
- GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导
Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...
随机推荐
- VUE中关于表单提交的简单实现
main.js import Vue from "../vue.js"; import App from "./App.js"; //启动 new Vue({ ...
- Thunder团队第六周 - Scrum会议1
Scrum会议1 小组名称:Thunder 项目名称:i阅app Scrum Master:王航 工作照片: 参会成员: 王航(Master):http://www.cnblogs.com/wangh ...
- laravel开发环境部署遇到的问题和个人感受
>感受 用chrome浏览器 英语很重要 跟上更新的步伐 要不断学习 问问题要把问题描述清楚,先尝试解决,解决不了再问大佬 情绪要稳定,不能因为一个问题困扰两天就想放弃了 发现了 stack o ...
- pfx 证书怎么打开
其实双击就能够自动运行导入向导的 不行的话使用我的办法: 单击开始--运行--里输入mmc 然后单击文件--选择添加删除管理单元--再选择添加--拉动滚动条找到证书一项,点击添加再点击完成(不用做任何 ...
- Linux less命令语法
一.Linux less命令语法 less [参数] 文件 less命令非常强大,在此只介绍几个常用的参数,更多参数使用man less来查看Linux帮助手册. -b <缓冲区大小> 设 ...
- linux shell学习(字符串操作)--01
http://blog.csdn.net/shuanghujushi/article/details/51298672 在bash shell的使用过程中,经常会遇到一些字符串string的操作,下面 ...
- FineCMS介绍
产品简介 FineCMS(简称免费版.企业版.公益版)是一款基于PHP+MySql+CI框架开发的高效简洁的中小型内容管理系统,面向多终端包括Pc端网页和移动端网页,支持自定义内容模型和会员模型, ...
- JAVA学习之泛型
ArrayList<E>类定义和ArrayList<Integer>类引用中涉及的术语:1.整个ArrayList<E>称为泛型类型 2.ArrayList< ...
- Maven jeetsite项目 搭建
, 一直没有系统的总结一下Maven的知识,今天,想从网上找一个Maven的项目,练练手,顺便学习一下maven的原理 和布局. 官网:http://www.jeesite.com/ 没想到,上来就给 ...
- [剑指Offer] 56.删除链表中重复的结点
题目描述 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 例如,链表1->2->3->3->4->4->5 处理后 ...