LightOJ 1375 - LCM Extreme 莫比乌斯反演或欧拉扩展
**题意:**给出n [1,3*1e6] 求
并模2^64。
**思路:**先手写出算式
观察发现可以化成
那么关键在于如何求得i为1~n的lcm(i,n)之和。可以知道lcm(a,b)为ab/gcd(a,b)
变换得(a/gcd) * (b/gcd)gcd 由于GCD的性质,可以知道a/gcd 与 b/gcd是互质的两个质数。由此可以想到应用欧拉函数,并且由性质能够证明 n*phi(n)/2为小于n所有与n互质数之和(证明:已知一个质数p那么显然n-p与它互质,那么phi(n)中有phi(n)/2对数,每对数和为n)
故 
设n/gcd(I,n)为d则 
由此题目化成枚举d即可。还需注意格式的控制转换,本题需要模2^64 只需设unsigned long long 溢出即模,内存限制是刚好卡住的。
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#define LL unsigned long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e6+10;
int eul[3*N];
LL fa[3*N];
LL ans[3*N];
void eular()
{
MMF(eul);
MMF(fa);
eul[1] = 1;
for(int i = 2; i < 3*N; i++)
{
if(!eul[i])
{
for(int j = i; j < 3*N; j+=i)
{
if(!eul[j])
eul[j] = j;
eul[j] = eul[j]/i * (i-1);
}
}
}
ans[0] = ans[1] = 0;
for(LL i = 2; i < 3*N; i++)
{
for(LL j = i; j < 3*N; j += i)
{
LL t = j * eul[i] / 2;
fa[j] += i* t;
}
ans[i] = ans[i-1] + fa[i];
}
}
int main()
{
eular();
int T;
int cnt = 0;
scanf("%d", &T);
while(T--)
{
LL n;
scanf("%llu", &n);
printf("Case %d: %llu\n", ++cnt, ans[n]);
//printf("%d\n",eul[3000000]);
}
return 0;
}
/*
5
2
10
13
100000
3000000
**/
LightOJ 1375 - LCM Extreme 莫比乌斯反演或欧拉扩展的更多相关文章
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)
[BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...
- UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...
- 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)
题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...
- JZYZOJ 1375 双亲数 莫比乌斯反演
http://172.20.6.3/Problem_Show.asp?id=1375 网上搜推理图. 有一段没有写莫比乌斯反演都快忘了..数学能力--,定理完全不会推,但是这道题整体来说应该是比较好写 ...
- 洛谷 - SP3871 GCDEX - GCD Extreme - 莫比乌斯反演
易得 $\sum\limits_{g=1}^{n} g \sum\limits_{k=1}^{n} \mu(k) \lfloor\frac{n}{gk}\rfloor \lfloor\frac{n}{ ...
- BZOJ2694 Lcm 【莫比乌斯反演】
BZOJ2694 Lcm Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample I ...
- [NOI2010]能量采集 BZOJ2005 数学(反演)&&欧拉函数,分块除法
题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...
- GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导
Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...
随机推荐
- C语言--链表基础模板
1.建立结构体 struct ST { int num;///学号 int score;///成绩 struct ST*next; };///结构体 2.空链表的创建 struct ST creatN ...
- Fox and Number Game
Fox Ciel is playing a game with numbers now. Ciel has n positive integers: x1, x2, ..., xn. She can ...
- Python学习之路5 - 函数
函数 定义方式: def func(): "这里面写函数的描述" 这里写代码 return x #如果没有返回值就叫"过程",函数和过程的区别就是有无返回值 实 ...
- iOS开发Interface Builder技巧
1.使view的Size与view中的Content相适应:选中任意的一个view,然后Editor->Size to Fit Content,或者简单的按 ⌘=接着就会按照下面的规则对选中vi ...
- JS DOM(2017.12.28)
一.获得元素节点的方法 document.getElementById() 根据Id获取元素节点 document.getElementsByName() 根据name获取元素节点 遍 ...
- NeoLoad系列- 快速上手教程
1.新建工程 2.点击录制脚本按钮 3.在弹出的开始录制对话框中,填写虚拟用户信息. Record in下拉框,用来填写用户路径,一般有三个容器组成: Init, Actions, and End.当 ...
- C#中Console.ReadLine()和Console.Read()有何区别?
Console.Read 表示从控制台读取字符串,不换行. Console.ReadLine 表示从控制台读取字符串后进行换行. Console.Read() Console.ReadLine()方法 ...
- Ubuntu 删除多余内核
Ubuntu 删除多余内核 转载▼ 首先查询当前我们使用的是内核是那个版本别删错了. uname -a 第二: 查询系统中装了多少内核 dpkg --get-selections|grep linux ...
- [C/C++] C++类对象创建问题
CSomething a();// 没有创建对象,这里不是使用默认构造函数,而是定义了一个函数,在C++ Primer393页中有说明. CSomething b(2);//使用一个参数的构造函数,创 ...
- [剑指Offer] 58.对称的二叉树
题目描述 请实现一个函数,用来判断一颗二叉树是不是对称的.注意,如果一个二叉树同此二叉树的镜像是同样的,定义其为对称的. [思路]递归,关键是isSame函数中的最后一句 /* struct Tree ...