一个简单的百万并发的TCP服务器的实现。
我们紧接着上篇文章,看看我们上节课的代码有什么问题?
可以明显的看出来上节课的代码公用了一个同样的缓冲区进行读写,正常的情况下我们需要封装一个结构体,让每个对应的客户端的FD都有独立的结构进行读写还有接收连接。
具体的结构如下:
struct sock_item
{
//客户端的fd
int fd;
//读取的缓冲区
char * rbuffer;
//缓冲区的大小
int rlength;
//写入的缓冲区
char * wbuffer;
//写入的缓冲区大小
int wlength;
//处理的事件类型
int event;
//回调函数
void (*recv_cb)(int fd,char * buffer,int length);
void (*send_cb)(int fd,char *buffer,int length);
void (*accept_cb)(int fd,char * buffer,int length);
};
struct eventblock
{
struct sock_item * items;
struct eventblock*next;
};
struct reactor
{
int epfd;
int blkcnt;
struct eventblock *evblk;
};
首先看一下我的思路,如图所示

我们有一个总的reactor结构保存我们多个事件域。事件域中保存这我们的所有连接的客户端,而事件域就是一个链表的数据结构,我们无法知道我们要连入多少台客户端,因此我们要使用链表,当有超过我们的设置的1024个sock_item项,就再去申请一个新的事件域,保存新的sockitem。
上面,暂时解决了连接了很多个客户端FD的保存的问题,还有一个问题,就是我们一个IP端口可以连接的最大数为65535.
我们如何解决那?
一个连接都有5个元素来确定,一个源IP,一个源端口,一个目的IP,一个目的端口,协议的种类。
这里我们有3个方式来解决这个问题
第一个就是通过有多个网卡,就可以接受多个客户端的接入。
第二个就是通过绑定多个端口的方式,也可以接受多个客户端的接入。
第三个就是通过多个目的ip的端口更改,也是可以解决这个问题的,
我这个例子就是通过使用绑定多个端口来实现的。
初始化100个端口的代码
int init_server(short port){
int listenfd= socket(AF_INET,SOCK_STREAM,0);
if (listenfd==-1)
{
return -1;
}
struct sockaddr_in servaddr;
servaddr.sin_family=AF_INET;
servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
servaddr.sin_port=htons(port);
if (-1==bind(listenfd,(struct sockaddr*)&servaddr,sizeof(servaddr)))
{
return -2;
}
//设置非阻塞
int flag = fcntl(listenfd,F_GETFL,0);
flag |=O_NONBLOCK;
fcntl(listenfd,F_SETFL,flag);
listen(listenfd,10);
return listenfd;
}
判断是否是监听的FD的代码
int is_listenfd(int *fds,int connfd){
int i=0;
for (int i = 0; i < PORT_COUNT; i++)
{
if (fds[i] == connfd) {
return 1;
}
}
return 0;
}
现在初始化我们ractor结构并保存我们的fd。(主要就是链表的操作)
int reactor_resize(struct reactor *r ){
if (r==NULL)
{
return -1;
}
struct eventblock* blk=r->evblk;
while (blk!=NULL && blk->next!=NULL)
{
blk=blk->next;
}
struct sock_item * item=(struct sock_item *)malloc(ITEM_LENGTH * sizeof(struct sock_item));
if (item==NULL)
{
return -2;
}
memset(item,0,ITEM_LENGTH*sizeof(struct sock_item));
//链表增加的操作
struct eventblock * block=malloc(sizeof(struct eventblock));
if (block==NULL)
{
free(item);
return -3;
}
memset(block,0,sizeof(struct eventblock));
block->items=item;
block->next=NULL;
if (blk==NULL)
{
r->evblk=block;
}else
{
blk->next = block;
}
r->blkcnt ++;
return 0;
}
struct sock_item * reactor_lookup(struct reactor * r ,int sockfd)
{
if (r==NULL)
{
return NULL;
}
printf("currrent eventblock num:%d\n",r->blkcnt);
int blkidx=sockfd/ITEM_LENGTH;
while (blkidx >= r->blkcnt)
{
//如果当前的数目超过我们的最大数目 r->blkcnt * 1024; 重新申请一个block_event;
reactor_resize(r);
}
int i = 0;
struct eventblock* blk=r->evblk;
while (i ++ < blkidx && blk != NULL) {
blk = blk->next;
}
return &blk->items[sockfd % ITEM_LENGTH];
}
最后就是我们整个的一个代码
#include<stdio.h>
#include<sys/socket.h>
#include<sys/types.h>
#include<netinet/in.h>
#include<fcntl.h>
#include <unistd.h>
#include<sys/epoll.h>
#include <string.h>
#include <stdlib.h>
#define BUFFER_LENGTH 128
#define EVENTS_LENGTH 128
#define PORT_COUNT 200
#define ITEM_LENGTH 1024
struct sock_item
{
//客户端的fd
int fd;
//读取的缓冲区
char * rbuffer;
//缓冲区的大小
int rlength;
//写入的缓冲区
char * wbuffer;
//写入的缓冲区大小
int wlength;
//处理的事件类型
int event;
//回调函数
void (*recv_cb)(int fd,char * buffer,int length);
void (*send_cb)(int fd,char *buffer,int length);
void (*accept_cb)(int fd,char * buffer,int length);
};
struct eventblock
{
struct sock_item * items;
struct eventblock*next;
};
struct reactor
{
int epfd;
int blkcnt;
struct eventblock *evblk;
};
int init_server(short port){
int listenfd= socket(AF_INET,SOCK_STREAM,0);
if (listenfd==-1)
{
return -1;
}
struct sockaddr_in servaddr;
servaddr.sin_family=AF_INET;
servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
servaddr.sin_port=htons(port);
if (-1==bind(listenfd,(struct sockaddr*)&servaddr,sizeof(servaddr)))
{
return -2;
}
//设置非阻塞
int flag = fcntl(listenfd,F_GETFL,0);
flag |=O_NONBLOCK;
fcntl(listenfd,F_SETFL,flag);
listen(listenfd,10);
return listenfd;
}
int is_listenfd(int *fds,int connfd){
int i=0;
for (int i = 0; i < PORT_COUNT; i++)
{
if (fds[i] == connfd) {
return 1;
}
}
return 0;
}
int reactor_resize(struct reactor *r ){
if (r==NULL)
{
return -1;
}
struct eventblock* blk=r->evblk;
while (blk!=NULL && blk->next!=NULL)
{
blk=blk->next;
}
struct sock_item * item=(struct sock_item *)malloc(ITEM_LENGTH * sizeof(struct sock_item));
if (item==NULL)
{
return -2;
}
memset(item,0,ITEM_LENGTH*sizeof(struct sock_item));
//链表增加的操作
struct eventblock * block=(struct eventblock*)malloc(sizeof(struct eventblock));
if (block==NULL)
{
free(item);
return -3;
}
memset(block,0,sizeof(struct eventblock));
block->items=item;
block->next=NULL;
if (blk==NULL)
{
r->evblk=block;
}else
{
blk->next = block;
}
r->blkcnt ++;
return 0;
}
struct sock_item * reactor_lookup(struct reactor * r ,int sockfd)
{
if (r==NULL)
{
return NULL;
}
printf("currrent eventblock num:%d\n",r->blkcnt);
int blkidx=sockfd/ITEM_LENGTH;
while (blkidx >= r->blkcnt)
{
//如果当前的数目超过我们的最大数目 r->blkcnt * 1024; 重新申请一个block_event;
reactor_resize(r);
}
int i = 0;
struct eventblock* blk=r->evblk;
while (i ++ < blkidx && blk != NULL) {
blk = blk->next;
}
return &blk->items[sockfd % ITEM_LENGTH];
}
int main()
{
int ret;
//申请 reactor 结构
struct reactor * r= (struct reactor * )calloc(1,sizeof(struct reactor));
if (r==NULL)
{
return -3;
}
//开始进行EPOLL的创建
r->epfd= epoll_create(1);
struct epoll_event ev, events[EVENTS_LENGTH];
int sockfds[PORT_COUNT] = {0};
for (int i = 0; i < PORT_COUNT; i++)
{
sockfds[i] = init_server(9999 + i);
ev.events = EPOLLIN;
ev.data.fd = sockfds[i];
epoll_ctl(r->epfd, EPOLL_CTL_ADD, sockfds[i], &ev);
}
//接下来开始接受 我们的客户端的连接请求
while (1)
{
//我们需要详细讲解一下这个函数的里面的各个参数的意义 ,以及它什么时候是阻塞的,什么时候是非阻塞的,
//第一个参数我们的EPFD的文件描述符,第二个我们的接收事件的缓冲器,第三个是我们事件数量的多少,最后一个参数就是我们等待的时长了。
//当是-1的时候就是一直等待连接的意思,没有连接就会 一直被阻塞住,
//当是0的时候就是一直有连接直接返回的意思,
//当是大于0的数的时候,就是在轮询查看是否有事件的时长,单位是MS。
int nready = epoll_wait(r->epfd,events,EVENTS_LENGTH,-1);
printf("----------%d\n",nready);
//开始遍历我们的事件
int i =0;
for (int i = 0; i < nready; i++)
{
int clientfd=events[i].data.fd;
if (is_listenfd(sockfds,clientfd))
{
//如果是我们的监听的FD,说明是有客户端连入的事件
struct sockaddr_in client;
socklen_t len=sizeof(client);
//接受客户端的请求,
int connfd=accept(clientfd,(struct sockaddr*)&client,&len);
if (connfd==-1)
{
break;
}
int flag = fcntl(connfd, F_GETFL, 0);
flag |= O_NONBLOCK;
fcntl(connfd, F_SETFL, flag);
//增加到我们的快递柜中
ev.events=EPOLLIN;
ev.data.fd=connfd;
epoll_ctl(r->epfd,EPOLL_CTL_ADD,connfd,&ev);
//如果是读的请求
struct sock_item *item = reactor_lookup(r, connfd);
item->fd = connfd;
item->rbuffer = (char*)calloc(1, BUFFER_LENGTH);
item->rlength = 0;
item->wbuffer = (char*)calloc(1, BUFFER_LENGTH);
item->wlength = 0;
}
else if (events[i].events & EPOLLIN)
{
struct sock_item *item = reactor_lookup(r, clientfd);
char *rbuffer = item->rbuffer;
char *wbuffer = item->wbuffer;
int n = recv(clientfd, rbuffer, BUFFER_LENGTH, 0);
if (n > 0) {
//rbuffer[n] = '\0';
printf("recv: %s, n: %d\n", rbuffer, n);
memcpy(wbuffer, rbuffer, BUFFER_LENGTH);
ev.events = EPOLLOUT;
ev.data.fd = clientfd;
epoll_ctl(r->epfd, EPOLL_CTL_MOD, clientfd, &ev);
} else if (n == 0) {
free(rbuffer);
free(wbuffer);
item->fd = 0;
close(clientfd);
}
}
else if(events[i].events & EPOLLOUT)
{
struct sock_item *item = reactor_lookup(r, clientfd);
char *wbuffer = item->wbuffer;
int sent = send(clientfd, wbuffer, BUFFER_LENGTH, 0); //
printf("sent: %d\n", sent);
ev.events = EPOLLIN;
ev.data.fd = clientfd;
epoll_ctl(r->epfd, EPOLL_CTL_MOD, clientfd, &ev);
}
}
}
return 0;
}
推荐一个零声学院免费教程,个人觉得老师讲得不错,
分享给大家:[Linux,Nginx,ZeroMQ,MySQL,Redis,
fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,
TCP/IP,协程,DPDK等技术内容,点击立即学习:
服务器
音视频
dpdk
Linux内核
一个简单的百万并发的TCP服务器的实现。的更多相关文章
- UNP学习笔记2——从一个简单的ECHO程序分析TCP客户/服务器之间的通信
1 概述 编写一个简单的ECHO(回复)程序来分析TCP客户和服务器之间的通信流程,要求如下: 客户从标准输入读入一行文本,并发送给服务器 服务器从网络输入读取这个文本,并回复给客户 客户从网络输入读 ...
- MarioTCP:一个单机可日30亿的百万并发长连接服务器
原文:http://blog.csdn.net/everlastinging/article/details/10894493 注:如果用此服务器做变长data的传输,请在业务处理函数中为input ...
- 自己动手写一个简单的(IIS)小型服务器
因为第一次在博客园发表随笔,不太会用,这个笔记是我之前在印象笔记中写好的,然后直接copy过来,有兴趣自己做一个IIS服务器的小伙伴们可以参照下面的流程做一次,也可以叫我要源代码,不过要做完,我觉得花 ...
- 用python实现一个简单的聊天功能,tcp,udp,socketserver版本
基于tcp协议版本 服务器端 import socket server = socket.socket() server.bind(('127.0.0.1', 8001)) server.listen ...
- 如何写一个简单的webserver(一):最简实现
本文主要讲述如何用C/C++在Linux环境下写一个简单的支持并发的web服务器,并不考虑服务器的健壮性.安全性.性能等一系列因素. 在本文中,该服务器仅支持GET请求. 项目地址:https://g ...
- 使用.net core在Ubuntu构建一个TCP服务器
介绍和背景 TCP编程是网络编程领域最有趣的部分之一.在Ubuntu环境中,我喜欢使用.NET Core进行TCP编程,并使用本机Ubuntu脚本与TCP服务器进行通信.以前,我在.NET框架本身写了 ...
- 构建C1000K的服务器(2) – 实现百万连接的comet服务器
转自:http://www.ideawu.net/blog/archives/742.html 这是关于 C1000K 序列文章的第二篇, 在前一篇文章 构建C1000K的服务器(1) – 基础 中, ...
- 【RL-TCPnet网络教程】第13章 RL-TCPnet之TCP服务器
第13章 RL-TCPnet之TCP服务器 本章节为大家讲解RL-TCPnet的TCP服务器实现,学习本章节前,务必要优先学习第12章TCP传输控制协议基础知识.有了这些基础知识之后,再搞本 ...
- Node.js实战14:一个简单的TCP服务器。
本文,将会展示如何用Nodejs内置的net模块开发一个TCP服务器,同时模拟一个客户端,并实现客户端和服务端交互. net模块是nodejs内置的基础网络模块,通过使用net,可以创建一个简单的tc ...
- Golang学习-第二篇 搭建一个简单的Go Web服务器
序言 由于本人一直从事Web服务器端的程序开发,所以在学习Golang也想从Web这里开始学起,如果对Golang还不太清楚怎么搭建环境的朋友们可以参考我的上一篇文章 Golang的简单介绍及Wind ...
随机推荐
- Mygin上下文之sync.Pool复用
sync.Pool 的作用 先看看官方文档怎样说的吧,我截取了官方文档的第一句. // A Pool is a set of temporary objects that may be individ ...
- 覆盖第三方jar包中的某一个类。妙!!
在我们日常的开发中,经常需要使用第三方的jar包,但是很多时候总是会发现第三方的jar包中的某一个类,有问题,但是又无法继承,因为你继承后 变成了你自己的,jar包中 调用的 还是 他自己内部包含的, ...
- Build 和 Compile 区别
- Linux-Shell变量的算术运算
一.算术运算符 1.+.- 求和. a+b a-b 2. *./.% 求乘积,商,余数 a*b a/b a/b 3.** 幂运算,例如 3**3 是求 3 的立方,即 27 4. ...
- 通过程序自动设置网卡的“internet共享”选项
操作系统 : Windows 10_x64 [版本 10.0.19042.685] Windows下可以通过网卡共享进行上网,但是需要在网卡的属性里面进行设置,需要在视窗界面进行操作,不能实现自动化. ...
- 线性SVM决策过程的可视化
线性 SVM 决策过程的可视化 导入模块 from sklearn.datasets import make_blobs from sklearn.svm import SVC import matp ...
- JS Leetcode 213. 打家劫舍 II 题解分析,在动态规划基础上感受分治算法的魅力
壹 ❀ 引 本题来自LeetCode 213. 打家劫舍 II,难度中等,属于前面我们做过的198. 打家劫舍的升级版,难度同样为中等,题目描述如下: 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内 ...
- JS leetcode II. 左旋转字符串 题解分析
壹 ❀ 引 简单的题目简单做,本题来自leetcode面试题58 - II. 左旋转字符串,题目描述如下: 字符串的左旋转操作是把字符串前面的若干个字符转移到字符串的尾部.请定义一个函数实现字符串左旋 ...
- linux 中grep 命令详细使用方法说明
前言在linux命令行中,经常需要对当前获取的一堆数据进行过滤.提取和分析,其中grep命令是其中非常重要的命令之一,比如,在生产环境服务器上,经常使用到下面这个命令 ps -ef | grep ja ...
- Js的GC机制
Js的GC机制 在Js七种基本类型中的引用类型Object的变量其占据内存空间大且大小不固定,在堆内存中实际存储对象,在栈内存中存储对象的指针,对于对象的访问是按引用访问的.在栈区中执行的变量等是通过 ...