记录一下pytorch如何进行单机多卡训练:

官网例程:https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html

下面以一个例子讲解一下,例如现在总共有8张卡,在第5、6、7三张卡上进行训练;

step 1:可视化需要用到的GPU

import os

os.environ["CUDA_VISIBLE_DEVICES"] = "5 , 6 , 7"

device = torch.device("cuda:0")  #注意多卡训练的时候,默认都先将model和data先保存在id:0的卡上(即实际的第5块卡),然后model的参数会复制共享到其他卡上,data也会平分成若干个batch到其他卡上(所以第一块卡上稍微耗费一点显存);

device_ids = [0 , 1 , 2] #注意device_ids必须从0开始,代码中的所有的device id都需要从0开始(这里的0代表第5块卡,1代表第6块卡,类推);

step 2:利用DataParallel对Model类进行封装

model = nn.DataParallel(model , device_ids = device_ids)

model.to(device)

step 3:

data.to(device)  #id:0卡上的数据再被平分成若干个batch到其他卡上

注意:晚上还有一些例程,需要对optimizer和loss利用DataParellel进行封装,没有试验过,但上面方法是参考官网例程,并经过实操考验;

pytorch multi-gpu train的更多相关文章

  1. Pytorch多GPU训练

    Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batc ...

  2. pytorch 多GPU训练总结(DataParallel的使用)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_40087578/artic ...

  3. keras使用多GPU并行训练模型 | keras multi gpu training

    本文首发于个人博客https://kezunlin.me/post/95370db7/,欢迎阅读最新内容! keras multi gpu training Guide multi_gpu_model ...

  4. Pytorch指定GPU的方法总结

    Pytorch指定GPU的方法 改变系统变量 改变系统环境变量仅使目标显卡,编辑 .bashrc文件,添加系统变量 export CUDA_VISIBLE_DEVICES=0 #这里是要使用的GPU编 ...

  5. Ubuntu下安装pytorch(GPU版)

    我这里主要参考了:https://blog.csdn.net/yimingsilence/article/details/79631567 并根据自己在安装中遇到的情况做了一些改动. 先说明一下我的U ...

  6. [转] pytorch指定GPU

    查过好几次这个命令,总是忘,转一篇mark一下吧 转自:http://www.cnblogs.com/darkknightzh/p/6836568.html PyTorch默认使用从0开始的GPU,如 ...

  7. Pytorch多GPU并行处理

    可以参数2017coco detection 旷视冠军MegDet: MegDet 与 Synchronized BatchNorm PyTorch-Encoding官方文档对CGBN(cross g ...

  8. pytorch 多GPU处理过程

    多GPU的处理机制: 使用多GPU时,pytorch的处理逻辑是: 1.在各个GPU上初始化模型. 2.前向传播时,把batch分配到各个GPU上进行计算. 3.得到的输出在主GPU上进行汇总,计算l ...

  9. Pytorch 多 GPU 并行处理机制

    Pytorch 的多 GPU 处理接口是 torch.nn.DataParallel(module, device_ids),其中 module 参数是所要执行的模型,而 device_ids 则是指 ...

  10. Pytorch使用GPU

    pytorch如何使用GPU在本文中,我将介绍简单如何使用GPU pytorch是一个非常优秀的深度学习的框架,具有速度快,代码简洁,可读性强的优点. 我们使用pytorch做一个简单的回归. 首先准 ...

随机推荐

  1. Filebeat命令参考

     Filebeat命令参考: Filebeat提供了一个命令行界面,用于启动Filebeat并执行常见任务,例如测试配置文件和加载仪表板.命令行还支持用于控制全局行为的全局标志. 命令: export ...

  2. The 16th Zhejiang provincial collegiate programming contest

    今天我挺有状态的,看过的题基本都给了正解(可能是昨晚cf div3打得跟屎一样,人品守恒,不好意思发题解了),自己也给队伍签了很多水题(不敢让队友写,怕出锅). 最后6题滚了,有点可惜.还差B和K没做 ...

  3. 小议SQL数据插入

    --数据插入操作:INSERT INTO user_info(username,age) VALUES('ZHANGSAN',20);INSERT INTO user_info(username,ph ...

  4. Leetcode 88. Merge Sorted Array(easy)

    Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array. Note:Yo ...

  5. [Alpha阶段]第三次Scrum Meeting

    Scrum Meeting博客目录 [Alpha阶段]第三次Scrum Meeting 基本信息 名称 时间 地点 时长 第三次Scrum Meeting 19/04/07 大运村寝室6楼 75min ...

  6. 细述:nginx http内核模块提供的变量和解释

    导读 ngx_http_core_module模块在处理请求时,会有大量的变量,这些变量可以通过访问日志来记录下来,也可以用于其它nginx模块. 在我们对请求做策略如改写等等都会使用到一些变量,顺便 ...

  7. iUAP云运维平台v3.0全面支持基于K8s的微服务架构

    什么是微服务架构? 微服务(MicroServices)架构是当前互联网业界的一个技术热点,业内各公司也都纷纷开展微服务化体系建设.微服务架构的本质,是用一些功能比较明确.业务比较精练的服务去解决更大 ...

  8. idea的一些好用的第三方插件

    用了Idea真的回不去Eclipse了,安利一波. 这里记录一些好用的插件. GenerateAllSetter 这个插件是用在写代码的时候调用Setter的时候能一次性把实体类中的所有Setter方 ...

  9. jsp中【<%=request.getContextPath()%>】项目路径

    1 2 "request.getContextPath()的值是        "<%=request.getContextPath()%><br/> &q ...

  10. Flutter之Color

    color:颜色Colors.green ,系统默认了几种颜色,分别如下: red, pink, purple, deepPurple, indigo, blue, lightBlue, cyan, ...